Tutoriels Python - Arduino

@ Version en ligne avec liens vers les fichiers individuels : https://gillesbeharelle.fr/deuxColonnes/table_liens_python_arduino

Arduino — Découvrir en expérimentant .@@

& Arduino — Exemples

Ecrire dans le port série
M Serial.begin(v), Serial.print(s), Serial.println(s), delay(n)

Lire des données dans le port série avec Python
M millis()

Acquisition d’un flux de données analogiques
M analogRead (pin)

Acquisition de données numériques
M pinMode (pin, mode), digitalRead(pin)

Sortie numérique PWM simulant un signal analogique
X analogWrite (pin, niveau)

Sortie analogique commandée par une entrée analogique
B map(pin, a, b, x, y)

Acquisition de données analogiques et entrées clavier
M Fonctions, #define, Serial.parseFloat ()

Moteur de Stirling — Tracé d’un cycle (P, V)
M Tests, opérateurs logiques

Arduino — Mémento
& Arduino — Mémento
Microcontrdleurs

Carte Arduino Uno - Brochage

Carte Arduino Uno - Caractéristiques techniques
Arduino IDE — Editeur — Moniteur série
Connexion de la carte a un ordinateur

C++ Arduino - Mémento @

& Mémento — Langage C++

void, setup(), loop()

Syntaxe

Types, opérateurs

Boucles, instructions conditionnelles

Tableaux

Port série, Serial.begin(v), Serial.print(s), Serial.println(s)

PC Tutoriels_Python_Arduino.docx 1/22

Python — Tutoriels détaillés

& Python — Fichiers texte

Structure des fichiers texte

Principe de I’extraction de données dans un fichier texte
Ouverture d'un fichier : modes lecture, écriture ou ajout
Lecture d'un fichier

Lecture d'un fichier — Traitement des données et stockage

& Python — Acquisition de données via le port série

Port série

Code minimal - Test du port série et visualisation des données dans le shell python
Détection automatique du port série

Traitement des données — Stockage des données dans une liste puis un tableau numpy

PC

Tutoriels_Python_Arduino.docx

2/22

Ecrire dans le port série

@ Application : visualiser et transmettre des données en cours d’acquisition (acquisitions réelles a suivre)
Le sketch suivant illustre la communication entre la carte Arduino et le port série de 1’ ordinateur (physiquement, via le cable USB).

M Instructions

Serial.begin (v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. ci-dessous).
Serial.print (s) Ecrire la chaine s (ligne courante si existante ou nouvelle ligne sinon) sans retour a la ligne final.
Serial.println(s) Ecrire la chaine s (ligne courante si existante ou nouvelle ligne sinon) puis retour a la ligne.
delay (n) Attendre n ms (millisecondes).

1| /*
@ 2 Exemple 1 - Ecrire dans le port série
3| %/
4
5 | void setup() {
6

// O série — vitesse transmission (en baud = bit/s)
1: Serial.begin (9600) ; <
8 ue 1 €rie n’est pas prét, attendre

9 | while (!Serial) {
10 delay (100); // Attendre 100 ms
11 }
12 }
13
14 | void loop () {

15 | Serial.print ("Arduino "); // Affichages les uns ..

16 | Serial.print ("tuto "); // .. & la suite des autres (méme ligne)
17 | Serial.println("Hello world!"); // Affichage puis retour a la ligne
18 | delay (1000); // Attendre 1000 ms

19 | }

/\ Vérifier que la vitesse de transmission indiquée dans le port série correspond a la vitesse indiquée dans le sketch sous peine
de ne rien voir s’afficher.
|

Cutput Serial Monitor X ©
<

II”
®

Mew Line = || 9600 baud -
750 baud
1200 baud
2400 baud /
4800 baud
9600 baud
19200 baud

31250 baud

Remarque : la boucle étant infinie, le flux dans le port série est ininterrompu.

/ Que signifie I'instruction !Serial (ligne 9) ?
Quelle est la différence entre les instructions print () etprintln () ? Ne pas hésiter a modifier le code pour effectuer des tests.

PC Tutoriels_Python_Arduino.docx 3/22

Lire des données dans le port série avec Python

Prérequis : @ Ecrire dans le port série

Q Application : récupérer via python un flux de données, les visualiser en cours d’acquisition et les sauvegarder

= Tnstructions
millis () Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

¢/ Ecrire un programme (dans I'IDE Arduino) permettant de simuler un flux de données dans le port série en respectant le
cahier des charges ci-dessous. La boucle simulant les mesures est interrompue lorsqu’un temps maximum (défini dans le
sketch) est atteint.

Le programme doit :
- définir une variable tMax = 5000 représentant la durée totale du processus de « mesure » ;
- initialiser une variable t0 en capturant le temps au début de la boucle loop () (cf. instruction millis () ci-dessus) ;
- initialiser un compteur de mesures nommé cpt au début de la boucle loop () ;
- initialiser une variable ti = t0 représentant I’instant d’acquisition de la mesure n° i ;
- exécuter en boucle les instructions suivantes tant que la durée du processus n’excede pas le temps maximal :
- attendre 100 ms ;
- incrémenter le compteur de mesures ;
- capturer la nouvelle valeur de t1 ;
- calculer le temps écoulé t depuis fpen s ;
- calculer une expression quelconque a partir de ce temps (relation affine par exemple) afin de simuler la mesure d’une
grandeur au cours du temps (utiliser une variable nommée mesure_capteur) ;
- écrire les valeurs de t, mesure_capteur et cpt dans le port série (séparés par des points-virgules).
- écrire "stop" dans le port série une fois la boucle précédente achevée.

Programme Python (tutoriels détaillés : documents « Python — Fichiers texte » et « Python — Acquisition de données via le port série »)

ﬁ 1 | import serial
2
3 | # Communication
4 port_serie = 'COM3' # Cf. Arduino IDE (port sélectionné)
5| bauds = 115200 # Cf. sketch arduino : Serial.begin (bauds)
6 # Enregistrement des mesures
7 | dossier = "" # Dossier courant (dossier de ce fichier python)
8 | nom_fichier = "exemple2.txt" # A personnaliser - Préférer un chemin ABSOLU
9 | chemin = dossier + nom_fichier
10
11 | ps = serial.Serial (port_serie, bauds) # Ouverture du port série
12 fichier = open(chemin, "w+") # Ouverture du fichier en écriture
13 | while True: # Boucle "infinie"
14 ligne = ps.readline() # Lecture d'une ligne sur le port série
15 ligne = ligne.decode ("utf-8") # readline -> binaire, conversion
16 ligne = ligne.strip('\n") # Traitement (suppression \n fin de ligne)
17 if 'Stop' in ligne: # Message d’arrét défini dans sketch Arduino
18 break # Sortie de la boucle while
19 print (ligne) # Vérification visuelle dans le shell
20 fichier.write (ligne) # Ecriture de la ligne dans le fichier
21 fichier.close() # Fermeture du fichier
22 ps.close() # Fermeture du port série

¢ Protocole
1. Téléverser le sketch sur la carte Arduino.
2. Fermer le moniteur série Arduino (ne pas déconnecter la carte du port USB).
3. Vérifier le paramétrage lignes 4 (port) et 5 (vitesse de transmission) dans le programme python.
4. Exécuter le programme python : les données lues doivent s’afficher dans le shell.
5. Vérifier le contenu du fichier en I’ouvrant (possible depuis pyzo).

/A L'onglet "Serial Monitor'" doit rester fermé pour que python puisse ouvrir le port série.

Erreur python : serial.serialutil.SerialException: could not open port 'COM3': PermissionError(13, 'Accés refusé.', None, 5)

Q Il existe de nombreuses fagons d’interrompre la lecture dans le programme python (durée d’acquisition, nombre de mesures...) qui
ne nécessitent pas d’inclure dans le sketch Arduino I’envoi d’une instruction particuliere.

PC Tutoriels_Python_Arduino.docx 4/22

Acquisition d’un flux de données analogiques - analogRead()

Q@ Application : enregistrer un flux ininterrompu de données analogiques

M Instructions
analogRead (pin) Lire la valeur binaire sur la broche pin (AO a AS), cf. brochage de la carte utilisée.

&2 On applique sur la broche A0 de la carte Arduino la tension ucg entre les pattes B et C d’un potentiométre soumis 2 la tension

uas =5 V. On fait varier cette tension manuellement en agissant sur le potentiometre rotatif.

& Convertisseur analogique numérique (CAN ou ADC pour analog-to-digital-converter en anglais) n bits : une grandeur analogiqu

appliquée au CAN est discrétisée sur 2" valeurs (de 0 a 2" -1).

)

La carte Arduino UNO est équipée d’'un CAN 10 bits : on dispose donc de 2'° = 1024 valeurs, de 0 & 1023, pour représenter la

grandeur analogique appliquée sur une broche. La fonction analogRead () renvoie la valeur binaire issue du CAN.

I1 faut donc convertir la valeur binaire en volts dans le cas envisagé en sachant que la tension appliquée au potentiometre est 5 V.

Schéma du circuit

La broche utilisée est la broche A0, on applique une tension au potentiometre (47 kQ) grace aux broches 5V et GND de la carte.

sV

[& Axduino
UNO

A
ONINQHY

A0
Al
A2 «3
A3 2
A4 x> 1
AS X0

Ucs

| Q
FTTTrrrrerrerrrnrntd

A\
Sketch
1 int U_binaire; // "Tension" lue : valeur renvoyée par analogRead() entre 0 et 1023
2 float U_Volts; // Tension vraie en volts
3
4 void setup () {
5 Serial.begin(115200);
6 while (!Serial) {
7 delay (100);
8 }
9 }
10
11 | void loop () {
12 // Lecture de la tension analogique appliquée sur la broche A0 de 1'Arduino
13 U_binaire = analogRead (A0);
14
15 // Conversion en Volts (analogique de 0 a 5 V < numérique de 0 a 1023)
16 U_Volts =
17
18 Serial.println (U_Volts);
19
20 delay (500); // Utile pour ralentir le flux de données
21 }

/ Ecrire la conversion valeur binaire / volts a la ligne 16 (proportionnalité).
/\ Ligne 16 : bien écrire 1023.0 et 5.0 afin que ces nombres soient traités comme des flottants

® Visualiser les variations de U dans le « Serial plotter » .

PC Tutoriels_Python_Arduino.docx

5/22

Acquisition de données numériques - digitalRead()

https://docs.arduino.cc/built-in-examples/basics/DigitalReadSerial/

Q Application : enregistrer un flux ininterrompu de données numériques

| Instructions
pinMode (pin, mode) Configurer la broche pin en entrée (mode = INPUT) ou en sortie (mode = OUTPUT).
digitalRead (pin) Lire la valeur booléenne sur la broche pin (2, 4,7, 8, 12, 13).

4R Bouton poussoir :
- lorsque le bouton est relaché, la patte C du bouton est reliée a B donc a la terre via la résistance R, la valeur LOW = 0 est
alors lue par une broche numérique ;
- lorsque le bouton est enfoncé, la patte C du bouton est reliée au potentiel SV en A, la valeur lue par la broche numérique
correspond alors a la valeur HIGH = 1.

Schéma du circuit
La broche utilisée est la broche 2.

5V

Axduino

samm e |
: ECEEEE | = »F | Bouton
g - | poussoir
2(») O -
A e s F
= - wgnwwmnn :
5 ezl p EEIEIE |
-8 J e T = R=10kQ
. <
\ J
Sketch
1 | int boutonPoussoir = 2; // Nom de variable : bouton poussoir connecté broche 2
2 int etatBouton;
3
4 void setup() {
5 Serial.begin(115200);
6 while (!Serial) {
7 delay (100);
8 }
9 // Configure la broche 2 = boutonPoussoir en entrée (INPUT)
10 pinMode (boutonPoussoir, INPUT);
11 | }
12
13 | void loop() {
14 // Lecture de la broche numérique
15 etatBouton = digitalRead (boutonPoussoir);
16
17 Serial.println (etatBouton);
18 delay (500);
19 | }

PC Tutoriels_Python_Arduino.docx 6/22

Sortie numérique PWM simulant un signal analogique - analogWrite()

https://docs.arduino.cc/built-in-examples/basics/Fade/

Q Application : générer un signal pseudo-analogique

M Instructions
analogWrite (pin, niveau) Ecrire la valeur niveau sur la broche pin (~3, ~5, ~6, ~9, ~10, ~11 PWM = symbole ~).
analogWrite () accepte des valeurs entre O et 255.

Pulse Width Modulation

. . . , 0% D Cycle - logWrite(0)
Modulation de largeur d’impulsion (schéma ci-contre) : en faisant varier le rapport cyclique R e s

(durée du niveau haut / durée du niveau bas) des impulsions, on fait varier la valeur moyenne |,

du Signal' 25% Duty Cycle - analogWrite(64)
C’est cette valeur moyenne qui simule un signal analogique. Le rapport cyclique pouvant "
varier rapidement, la valeur moyenne peut également évoluer au cours du temps et simuler un ov I't L L L L

50% Duty Cycle - analogWrite(127)

signal analogique variable dans le temps. .

Ov -
4R On fait varier la luminosité d’une LED en utilisant une sortie numérique PWM a modulation 75% Duty Cycle— analogWiite181)

de largeur d’impulsion. sv 1 1 1 1
Oov

T

100% Duty Cycle - analogWrite(255)
f . 1

|

’ . 0 SV
Schéma du circuit

La broche PWM utilisée est la broche ~9.

Oov

4 N
% TR
1nsnns Jalanas saflus =Y 13 =
e o e oo e ’
I Axduine il
' i UNO o
-----:;-né'---------\ 10 o=
SRR) G RS e S s
---mllla-annw = N
------------------ 7 -
5 By R=220Q
g b e =
= Al 4 b=
A2 o3 [
A3 2 b=
A4 iy 1l f
AS RRCO fpum LED
GND S]
I u - ™ " "
P s m _ |
Sketch
1 int led = 9; // Nom de variable : n° de la broche PWM connectée a la LED
2 | int intensite = 0; // Niveau de luminosité
3 | int variationI = 5; // Pas = Al de variation de 1l'intensité
4
5| void setup() {
6 // Configure la broche 9 = led en sortie (OUTPUT)
7 pinMode (led, OUTPUT);
81}
9
10 | void loop() {
11 // Fixe le niveau de luminosité de la led en écrivant ce niveau a la broche 9
12 analogWrite (led, intensite);
13
14 //
15 intensite = intensite + variationI;
16
17 //
18 if (intensite <= 0 || intensite >= 255) {
19 variationI = -variationI;
20 }
21 delay (30);
22 }

¢ Expliquer le code (lignes 15, 18 et 19).

PC Tutoriels_Python_Arduino.docx 7/22

Sortie analogique commandée par une entrée analogique

@ Application : générer un signal pseudo-analogique a partir d’un autre signal analogique

M Instructions
analogRead () renvoie une valeur dans I’intervalle [0, 1023].
analogWrite () accepte des valeurs dans ’intervalle [0, 255].
La fonction map (brocheEntréeAnalogique, 0, 1023, 0, 255) permetde convertir les valeurs issues d’une broche d’entrée
analogique renvoyant des valeurs comprises entre 0 et 1023 en valeurs dans I’intervalle 0-255.

R Cet exemple effectue une synthese des exemples 3 et 5 et reprend le méme matériel.
Le potentiometre 47 kQ (simulant ici un capteur) va permettre de fixer le niveau de luminosité de la LED.

5V
13

ARDUINO 2
1"
18

TTTT

"
-
®

~

220 Q

ssmssndnbas

ONINQHY

R

ol

TTTTTTTTT

‘¢

GND

/ Ecrire le code permettant de faire varier la luminosité de la LED en agissant sur le potentiometre.
Les valeurs lues sur la broche d’entrée et écrites sur la broche de sortie seront affichées dans le moniteur série (vérifier que les
intervalles de variation sont corrects).

PC Tutoriels_Python_Arduino.docx 8/22

Acquisition de données analogiques et entrées clavier

@ Principe : enregistrer un signal analogique point par point avec entrées de données au clavier.

| Instructions

void ([parametres]) Fonction ne renvoyant rien (avec ou sans parametres)
type nom_fonction ([parametres]) Fonction renvoyant en résultat (return valeur)
Serial.parseFloat () Renvoie un flottant lu dans le port série

%2 Application : mesure de pression (capteur Elab-PA) et de volume (clavier).

Carte Educaduino (Arduino Mega) avec capteur de pression absolue :

Le volume est lu sur la seringue et la valeur sera entrée au clavier.

Le capteur de pression absolue Elab-PA renvoie sur la broche A9 une valeur de type float codée sur 10 bits donc comprise dans
I’intervalle [0, 1023] correspondant a une pression (en Pa) dans I’intervalle [20 000, 400 000] (i.e. entre 200 et 4000 hPa).
11 faut donc définir une fonction permettant de calculer la pression réelle P a partir de la valeur mesurée V :

P P
P=aV+b ot a=—"—"- ethb=P —aV,_ _ avec Pusu=400000, Py =20000, Vyax = 1023.0, Vyin = 0.0.

max

/ Ecrire le croquis (ou esquisse ou sketch) permettant d’entrer les valeurs de volume au clavier et de mesurer la pression avec le
capteur et d’afficher les données dans le moniteur série.

Exploitation rapide : copier les données directement dans le moniteur série & I’aide du bouton : @ = @
Coller dans un fichier texte (Notespad++, Bloc-notes) et enregistrer au format texte (.txt).
Exploiter dans Régressi : tracer le produit PV en fonction de V. La loi de Mariotte est-elle vérifiée ? Mo Line Ending =

Sauvegarde des données dans un fichier : cf. « Lire des données dans le port série avec Python ».

Q@ Aide
Le sketch page suivante permet de réaliser 1I’acquisition de grandeurs (analogiques ou numériques) en contr6lant 1’acquisition au
clavier :
- soit pour entrer des données au clavier pour une mesure difficile a effectuer via un capteur ;
- soit pour interrompre 1’acquisition et effectuer un réglage entre deux mesures.

Par ailleurs, les acquisitions et les sorties sont regroupées dans deux fonctions (non indispensable mais données a titre d’exemple
afin d’illustrer la structure de programmes complexes).

PC Tutoriels_Python_Arduino.docx 9/22

Sketch (principe — code a adapter)

1| // Un seul capteur dans cet exemple : entrée analogique A0

2 | #define capteurPin AOQ // Broche Arduino utilisée

3

4 float capteurValeur; // Variable de stockage de la valeur capteur

5 float entreeClavier; // Données clavier issues du port série

6

7 void setup () {

8 Serial.begin(115200);

9 while (!Serial) {;}

10 Serial.println ("\nEntrée clavier;Capteur"); // Colonnes (en-téte fichier)
11 }

12

13 | void loop() {

14 if (Serial.available() > 0) { // Si données dans le port série
15 entreeClavier = Serial.parseFloat(); // Conversion données port série
16 capteurValeur = lecture (capteurPin); // Lecture capteur

17 ecriture (entreeClavier, capteurValeur); // Ecriture dans le port série
18 }

19 }
20
21 float lecture (int broche) {
22 float valeurMesuree = analogRead (broche) / 1023.0 * 5.0; // Conversion
23 delay(2); // delai (ms) pour laisser le CAN réagir
24 return valeurMesuree;
25 }
26
27 void ecriture(float c, float v) {
28 Serial.print (c);
29 Serial.print(";");

30 Serial.println(v);

31 }

Q Ala ligne 2, #define est une directive de compilation (cf. « Arduino — Mémento »).

@ A laligne 21, on définit une fonction lecture admettant deux parametres et renvoyant une valeur (syntaxe avec type sans void).
A la ligne 27, on définit une fonction ecriture admettant deux parametres et ne renvoyant aucune valeur (void sans type).
L’ordre d’écriture des fonctions est sans importance.

Q A la ligne 15, la boucle est interrompue tant que rien n’est entré au clavier dans la zone de saisie (copie d’écran ci-dessous).
Apres validation, les lignes 16 et 17 sont exécutées et la boucle recommence.

Lignes 15 et 28 des conversions sont effectuées car les données transitant par le port série sont des chaines (lecture et écriture).

/A\ Bien sélectionner ‘No Line Ending’ dans le moniteur série.

Output Serial Monitor X \ 0 =
Q93‘71) Zone saisie clavier (| NolineEnding ~)115200baud ~

Entrée clavier;Capteur
52.30:2.00

Sans cette précaution, deux lignes apparaissent a chaque saisie.

PC Tutoriels_Python_Arduino.docx 10/22

Moteur de Stirling — Tracé d’un cycle (P, V)

@ Principe du moteur Stirling (Robert et James Stirling 1816)

Le moteur Stirling est un moteur a combustion externe (toute source de chaleur peut &tre utilisée : énergie solaire, énergie
géothermique, énergie nucléaire...) et a fluide de travail en cycle fermé (I’ air interne au moteur ne sort jamais de celui-ci).

Les moteurs thermiques usuels sont & combustion interne en cycle ouvert.

La spécificité de ce moteur réside dans un régénérateur (échangeur thermique interne) qui améliore son efficacité.

Moteur Stirling de type béta

Le moteur comporte deux pistons, un piston de travail ou piston moteur et un piston « déplaceur » reliés a la roue d’inertie via
deux bielles fixées a la roue grace a deux manetons décentrés par rapport a I’axe de rotation de la roue (cf. schéma ci-dessous).

Cet embiellage crée pour le piston moteur un retard de phase de @/2 (un quart de tour) par rapport au piston déplaceur.

Le piston déplaceur (de plus petit diametre que le cylindre) possede un double rdle :

- faire passer alternativement le gaz de la source chaude a la source froide (ailettes de refroidissement dans 1’air ambiant) ;

- contribuer a réchauffer ou refroidir I’air au cours de ses transformations.

Circulation de I"air Piston de travail Bielle reliée au piston déplaceur

autour du piston déplaceur
Manetons

y $—— Roue-volant d’inertie

Source chade aTc I“ lllllr

8/ Source froide a Tr : Bielle reliée au piston de travail

- -

Bien distinguer 1’air du c6té piston moteur-source froide de I’air du c6té source chaude pour analyser le fonctionnement.

i [5

Piston déplaceur en position basse

La totalité de I’air, encore chaud, est au contact de la source froide : sa température baisse ainsi que sa pression. Puis il commence a étre refoulé
vers la source chaude par les deux pistons qui se rapprochent tandis que le piston déplaceur se refroidit au contact de la source froide.

Le volume entre les deux pistons diminue : la compression du volume « moteur » s’effectue au contact du déplaceur refroidi, la compression
est isotherme (V1 , Pt a T = constante).

Point mort bas
Piston de travail en position basse

Au voisinage du point mort bas, le volume « moteur » varie peu autour de son minimum : la compression estisochore. L’ air est progressivement
transféré du coté de la source chaude par le piston déplaceur qui se rapproche de sa position la plus haute.

Piston déplaceur en position haute

L’air réchauffé dont la pression a augmenté commence a repousser le piston moteur tandis que le déplaceur contribue a le transférer vers le
piston moteur réchauffant au passage le piston déplaceur. Les pistons s’éloignent, le piston moteur est refoulé par 1’air chaud dont la pression
va diminuer. Le piston déplaceur est alors au contact de la source chaude : la phase motrice est une détente isotherme (V1, P\ a T = constante).

()

4 \‘

B Point mort haut (PMH

Piston de travail en position haute

Au voisinage du point mort haut, le volume « moteur » varie peu autour de son maximum et 1’air du cdté « moteur » est au contact de la source
froide, il se refroidit et sa pression diminue : la détente est isochore. Le piston déplaceur transfere progressivement I’air vers la source froide.

PC Tutoriels_Python_Arduino.docx 11/22

Moteur Stirling de type gamma

Dans un moteur de type gamma, le fonctionnement est plus facile a

appréhender car les deux pistons évoluent dans deux cylindres séparés mais i |

en communication ’un avec 1’autre (schéma ci-contre et photo ci-dessous). _l___l
_ il
I Y

5 [

PMH - Vmax pour le piston moteur

-

T

>

2

j

Dans ce moteur, le régénérateur est la plaque en métal entre les deux i
cylindres.

)
—

Vmin pour le piston moteur

Modélisation du cycle de Stirling

max

On note a le taux de compression défini par : a =
min

On suppose que ’air est un gaz parfait.

En I’absence de régénérateur, le rendement de ce moteur est :

T.-T
T.Ina+-“—*+
/ ,7 :1_—y_1
sr TC_TF
Tclna+
y-1

1
‘/min ‘/ma,:t V

En présence d’un régénérateur parfait, on suppose que celui-ci récupere enticrement 1’énergie nécessaire au réchauffage isochore
(de 4 a 1) au cours du refroidissement isochore (de 2 a 3) : le piston déplaceur est effectivement au voisinage de la source chaude de
2 a4 de fagon a restituer 1’énergie emmagasinée de 4 a 2.
/ L’efficacité devientalors : 7, =1- T—F .

C
On reconnait I’efficacité de Carnot valable pour un cycle ditherme réversible appelé cycle de Carnot et constitué de deux isothermes
et de deux isentropiques. Cependant le cycle de Stirling n’est pas un cycle de Carnot car constitué de deux isothermes et de deux
isochores et n’est pas ditherme en raison des échanges avec le régénérateur.
Néanmoins ce résultat permet de comprendre que le rendement est amélioré en présence du régénérateur (qui ne saurait €tre parfait
en pratique).

PC

Tutoriels_Python_Arduino.docx 12/22

4R Moteur Stirling instrumenté

Deux fourches optiques permettant de déterminer la position de la roue d’inertie et un capteur de pression sont reliés a une carte
Arduino Uno.

. Vi
’) \ e ' \°
(') N N
o\ (48 4 . d
G aN

Fourche optique n°1 :
détection des 50 fentes courtes\

Repere de point mort
o L LB | .. P,

Roue d’inertie

W
) Sl

Q)

L
.

- |

T TN Fourche optique n°2 :
o d lection de la fente correspondant au PMH

Fi7

oy
arte Arduino Uno
et son « shield »

Piston de travail

i J L. X \\ ;
. . '
Prise de pression \ LA

- /

N 4

i

| Surfaces d’échange
Capteur de pression ' \ thermique

relié a la carte

Piston déplaceur

Données techniques

Guidage en translation
réalisé par le cylindre B

R P I \
¥ S '
=F Axe de la
I |ss rpue d/’in/ertie
—_) @19 D . . .
Mouvement d’entrée : 8(t) = ax (sens + = sens horaire de rotation)
L’angle & est connu grice aux deux fourches optiques (cf. ci-dessous).
1| s s : n
L = > Onendéduit: 8§ =—+ix30 (observer le passage du PMH la fourche 2)
2
|) \| - / Le volume du cylindre moteur est alors :
) @95 D’ 5 5. D’
|< ,| chl=[OB—(L—R)]—=|:Rsin0+ LZ—RZCOSZH—(L—R):|
@$100 4 4
Distances / longueurs en mm
Longueur de la bielle du piston de travail : L =155 mm
Ecart OA du maneton de bielle moteur a I’axe de la roue d’inertie : R =2 mm
Diametre du piston de travail : D =19 mm
Nombre de fentes découpées dans la roue d’inertie : N =50 = Angle entre deux fentes successives : 08= 21t/ N

Parmi ces fentes, une est plus longue et permet de détecter le passage par le point mort haut (PMH) (position du piston de travail la
plus haute donc volume maximum). Cette fente est détectée par la fourche optique n°2 (et par la fourche n°1).
A chaque passage d’une fente devant la fourche optique n°1, une mesure de pression est enregistrée.
Au cours d’un tour de la roue d’inertie, on dispose de 50 triplets de la forme (i, kpmu, QPuiscr) OU :
» iestle numéro de la fente comptée a partir du PMH (celui-ci correspond ai=1) ;
» kpemu est le nombre de tours effectués par la roue (i.e. le nombre de passage de la fente la plus longue devant la fourche 2) ;
» OPuiscr est la pression différentielle (différence entre la pression atmosphérique et la pression dans le cylindre).
Une surpression nulle correspond a 2,5 V pour une alimentation entre 0 et 5V.
La tension de sortie Ucapieur st discrétisée par le CAN 10 bits de la carte Arduino et fournit la valeur OPgiscr.

PC

Tutoriels_Python_Arduino.docx 13/22

-512

@ La valeur de la pression absolue en Pa est alors : P = P +0P=F + e x5/ Sb ou Sb est la sensibilité du capteur.
1023
5UC(1]7H’M"
Sh=——=1,03 V/kPa = 1,03/1000 V/Pa.
5Préelle
Par ailleurs, le volume minimal du cylindre moteur est Vimin = 55 660 mm? hors volume mort (volume ajouté par la prise de pression).

D’
Le volume réel du cylindre estdonc : V =V, .+ [R sin@+~L' =R cos’ 6 - (L - R)}— .
4

Sketch

Hypothese : 1a fréquence des mesures est supérieure a la fréquence de rotation, i.e. tous les changements d'état des fourches optiques
sont détectés.

Q Le programme ne commence a écrire les données qu’a partir d’une détection du PMH de fagon a disposer des valeurs
correspondant a un cycle entier et on définit par ailleurs un nombre maximum de cycles a enregistrer.

1 | #define capteurPression A0 // Capteur de pression sur la broche A0

2 | #define fourchel Al // Fourche optique n°l sur la broche Al

3 | #define fourche2 A2 // Fourche optique n°2 sur la broche A2 (détection PMH)

4 | #define sepCol ";" // Séparateur de colonnes —-> identique dans pgm python

5

6 | int compteurl = 0; // Compteur fourche optique n°l (permet de calculer le volume)

7 | int compteur2 = 0; // Compteur fourche optique n°2 (nombre de passages par le PMH)

8 | int etatFourchel; // Etat de la fourche optique n°l

9 | int etatFourche2; // Etat de la fourche optique n°2
10 | int memoirel = LOW; // Mémoire de 1'état de la fourche optique n°l
11 | int memoire2 = LOW; // Mémoire de 1'état de la fourche optique n°2
12 | unsigned long t; // Instant de mesure
13 | int cpt2Max = 11; // Nbre de tours a enregistrer (nombre de lignes a lire par python)
14
15 | void setup() {
16 Serial.begin(115200);
17 pinMode (fourchel, INPUT) ; // Configure la broche de la fourche n°l en lecture
18 pinMode (fourche2, INPUT) ; // Configure la broche de la fourche n°2 en lecture
19 while (!Serial) {;} // Ne rien faire tant que port série non disponible
20 | }
21
22 | void loop () {
23 while (compteur2 < cpt2Max) {
24 // Détection du passage de la fenétre du PMH devant la fourche optique n°2
25 etatFourche2 = digitalRead(fourche2); // Lecture de 1l'état de la fourche n°2
26 // Si état fourche 2 différent de état enregistré ET état "haut" (faisceau détecté)
27 if ((etatFourche2 != memoire2) && (etatFourche2 == HIGH)) {
28 compteur2++; // On incrémente le compteur2 (nbre de passages par le PMH)
29 compteurl = 0; // On remet le compteurl a zero (angle dans [0, 2*pi])

30 }

31 // Détection du passage d'une des 50 fenétres devant la fourche optique n°l

32 etatFourchel = digitalRead(fourchel); // Lecture de 1l'état de la fourche n°l

33 // Si état fourche 1 différent de état enregistré ET état "haut" (faisceau détecté)
34 // La condition compteur2 > 0 permet de démarrer la transmission sur un PMH

35 if ((etatFourchel != memoirel) && (etatFourchel == HIGH) && (compteur2 > 0)) {

36 compteurl++; // On incrémente le compteurl

37 t = micros(); // Instant de mesure en us

38 // Affichage des quadruplets de valeurs de compteurl, compteur2, pression, t

39 Serial.print (compteurl); Serial.print (sepCol);

40 Serial.print (compteur2?2); Serial.print (sepCol);

41 Serial.print (analogRead(capteurPression)); Serial.print (sepCol);

42 Serial.println(t);

43 }

44 // Mémorisation des états pour détecter les changements a la lecture suivante

45 memoirel = etatFourchel;

46 memoire2 = etatFourche2;

47 }

48 Serial.println("Stop");

49 while (true) {;}

50 | }

/\ Ligne 11 : pour les tests, utiliser une valeur « raisonnable » pour la variable cpt 2Max (3 ou 4).
Noter que la numérotation débute a 0 mais que le cycle n°0 sera ignoré car incomplet donc le premier cycle enregistré aura le
n°l et que le dernier aura pour n° cpt2Max-1 (donc 10 cycles complets avec cpt2Max = 11).

Tutoriels_Python_Arduino.docx 14/22

' Programme Python Ressources :

W e sketch Arduino et le programme python a compléter sont disponibles en téléchargement via le QRcode (lien vers la rubrique
TP de gilles.beharelle.fr) : Tutoriels Python — Arduino, a la rubrique Arduino — Découvrir en expérimentant : Moteur de Stirling.

¢/ Compléter le code de la fonction calcul_PV (directement dans Pyzo ou Spyder)

1 | import serial

2 | import serial.tools.list_ports

3 | import matplotlib.pyplot as plt

4 | from matplotlib import animation

5 | import matplotlib.colors as mcolors

6 | import numpy as np

7

8 | # calcul PV permet de tracer

9 | # - tous les cycles avec num_cycle=None

10 | # — un unique cycle avec num_cycle= numéro cycle souhaité

11 | def calcul_PV(dataN, num_cycle=None, Po=le5, unite='mm3'"):

12 """ dataN = tableau de lignes de la forme [i, k, Pdiscr, t]

13 i = n® de la fente comptée a partir du PMH

14 k = nombre de tours (nombre de passages au PMH)

15 Pdiscr = pression différentielle renvoyée par CAN Arduino (bits)
16 t = instant de mesure (us)

17 num_cycle = n° du cycle souhaité = 1l'une des valeurs de k dans data
18 Po : pression atmosphérique en Pa

19 unite : 'mm3' ou 'm3' ou 'SI'
20 e
21 assert unite in ['mm3', 'm3', 'SI'], "Unité incorrecte ('mm3', 'm3' ou 'SI)"
22 if num_cycle is None: # Calculs pour tous les cycles
23 data = dataN
24 else: # Calculs pour le cycle spécifié par num_cycle
25 assert float (num_cycle) in dataN[:,1], "n® cycle incorrect"”
26 data = np.array ([l for 1 in dataN if 1[l]==float (num_cycle)l])
27
28 # Caractéristiques mécaniques du moteur
29 L = # Longueur bielle piston moteur (mm)

30 R = # Rayon maneton bielle moteur (mm)

31 D = # Diametre piston moteur (mm)

32 S = # Surface piston moteur (mm**2)

33 dtheta = # Angle entre 2 fentes (rad)

34 Vmin = # Volume minimum du cylindre moteur (mm**3)
35

36 # Calcul du volume du gaz dans le cylindre moteur

37 i= # n° fente a partir du PMH

38 theta = # Angle correspondant a la fente n°i

39 OB = # Position piston

40 vV = # Volume (mm**3)

41 if unite in ['m3', 'SI']:

42 V *= le-9

43

44 # Capteur de pression différentielle

45 Sb = # Sensibilité = dv/dPréelle = 1.03/1000 V/Pa
46

47 # Pression

48 dpd = # Pression différentielle discrétisée en bits
49 dPv = # Pression différentielle en V

50 dPr = # Pression différentielle réelle en Pa

51 P = # Pression absolue en Pa

52

53 # Instant de mesure

54 t = # t en ps (cf. sketch Arduino)

55

56 return P, V, t

¢ En lisant le code du programme fourni, déterminer les noms des tableaux/listes contenant les données :
- au format texte (tableau 1D de lignes) ;
- au format numpy (tableau 2D).

@ Des informations supplémentaire concernant la fonction portArduino sont disponibles via le lien précédent (Tutoriels Python —
Arduino, a la rubrique Python — Tutoriels détaillés : Acquisition de données via le port série).

PC Tutoriels_Python_Arduino.docx 15/22

W 1.a derniére cellule du programme python fourni permet de sauvegarder dans un fichier texte les données volatiles (perdues lors
d’un redémarrage du noyau python par exemple).

g@Acquisition des données

-

woe

10.
11.
12.

Brancher la carte Arduino sur un port USB du PC (a I’arriere du PC et non en facade).
Téléverser le sketch sur la carte, prendre cpt2Max =3 .
Afficher le moniteur série et faire tourner délicatement le moteur dans le sens indiqué page 3 de ce document : les données
apparaissent dans le moniteur série (relancer le moteur si nécessaire tant que 1’affichage n’est pas interrompu).
Fermer le moniteur série.
Identifier la variable en relation avec cpt2Max dans le programme python et ajuster sa valeur.
Exécuter le programme python et relancer le moteur a la main comme a 1’étape 3 : les données sont affichées dans le shell
puis un cycle est tracé.
Modifier la variable cpt2Max du sketch (prendre 11 par exemple) et la variable python correspondante.
Poser le moteur sur une tasse d’eau chaude, attendre quelques secondes puis le lancer trés doucement comme a 1’étape 3
s’il ne démarre pas seul.
Exécuter le programme python.
/\ Lorsque le moteur s'arréte poser le moteur sur un chiffon et non sur la paillasse.
Sauvegarder I’acquisition dans un fichier (effectuer une nouvelle acquisition si nécessaire).
Ouvrir le fichier (possible depuis I’explorateur de fichiers de Pyzo) et vérifier que les données sont correctes : pas de lignes
tronquées ou sautées, nombre entier de cycles complets (la premiere colonne doit varier de 1 a 50 de facon cyclique).

¢ Ecrire un programme permettant de lire, traiter les données du fichier de sauvegarde et les sauvegarder au format texte dans une
liste nommée dataFichier (cf. Tutoriels Python — Arduino, a la rubrique Python — Tutoriels détaillés : Fichiers texte).
Transformer cette liste en tableau numpy nommé dataFichierN.
Vérifier que la fonction calcul_PV permet de tracer le(s) cycle(s).

/ Traitement des données — Aspects thermodynamiques

13.
14.
15.

16.
17.

Définir « a la main » (en analysant les données d’un cycle) ou écrire une fonction permettant de déterminer les index des
volumes minimum et maximum dans la liste des volumes au cours d’un unique cycle.

Ecrire une fonction aire(x, y) permettant de calculer I’aire sous la courbe y(x) par la méthode des trapézes.

Ecrire une fonction puissance(numCycle) permettant de déterminer la puissance fournie par le moteur au cours du cycle
n°numCycle (cette fonction appellera la fonction calcul_PV de facon a disposer des données pour ce cycle en précisant que
I’unité doit étre m?).

Tester cette fonction.

Ecrire une fonction puissanceMoyenne(tab) permettant d’obtenir la puissance moyenne calculée sur tous les cycles
disponibles dans le tableau de données tab.

&R Prolongements

18.

Imaginer un protocole permettant d’estimer le rendement de ce moteur.

PC

Tutoriels_Python_Arduino.docx 16/22

Arduino - Mémento

Introduction aux microcontroleurs

Arduino est la marque d'une plateforme de prototypage open-source qui permet aux utilisateurs de créer des objets électroniques
interactifs a partir de cartes électroniques équipées d’un microcontréleur.

Un microcontréleur est un circuit intégré qui integre les éléments essentiels d'un ordinateur : processeur, unités périphériques et
interfaces d'entrées-sorties. Les microcontroleurs se caractérisent par un plus haut degré d'intégration (taille réduite), une plus faible
consommation électrique et un cofit réduit par rapport aux microprocesseurs polyvalents utilisés dans les ordinateurs personnels.

Un microcontroleur peut étre programmé pour analyser et produire des signaux électriques.
Ils sont utilisés dans les systemes embarqués pour piloter des robots, dans les voitures, les avions, les récepteurs GPS, les
télécommandes, 1'électroménager, les jouets, la téléphonie mobile, la domotique, etc.

Dans le cas d’ Arduino, les langages de programmation utilisés sont C et C++.

Un IDE (environnement de Développement Intégré) Arduino permet d’écrire et de téléverser les programmes dans la mémoire ROM
du microcontréleur (cf. ci-dessous).

Rq : Pyzo ou Spyder sont des IDE pour Python, VisualStudio est un IDE multi langages.

Le microcontrdleur des cartes Arduino utilise deux types de mémoires.

v' Une mémoire morte (ROM, pour l'anglais read-only memory), une mémoire au contenu non volatile utilisée pour enregistrer
des informations qui doivent étre conservées lorsque l'appareil qui les utilise n'est plus sous tension.
La carte Arduino utilise une EEPROM (Electrically-Erasable Programmable Read-Only Memory ou mémoire morte effacable
électriquement et programmable) qui peut étre facilement effacée et réécrite a I'aide d'un courant électrique.
C’est dans cette mémoire que seront stockés les programmes.

v' Une mémoire vive (RAM acronyme anglais pour random-access memory), « mémoire a acces aléatoire » a acces rapide dans
laquelle peuvent étre enregistrées des données volatiles.

Carte Arduino Uno - Brochage

USB : alimentation et

Alimentation téléversement des programmes
(sauf si USB) |
MAXIMUM current per -
A I/0 pin is 2@mA Bouton Reset
A MAXIMUM current per
+3.3V pin 1s 58mA
Micro 12
‘. [o)
@EEN | ees
wicro @ECLESD o
—
e &« e
B Power [iy] Power Input o
@Il o
Power Output (oo] @ETHE ree
M Ground VIN @) A THEGHAZED PD7 Broches numériques - Digital pins
@I eos ~ digitalRead(), digital Write()
X 014] @Gl s
pel ([a1 @ o
pe3 [Az D3 Symbole ~ : broche PWM (D3, D5...)
ves [W @ 2 | analogWrite()
pea D18 @Il ron
[EMGINo] Pes [as PDB

Broches analogiques — Analog pins ICEERTEER] ros

- analogRead() TOP VIEW 2 TX LED PDS5
a RX LED PD4
@ Power

La modulation PWM (Pulse Width Modulation en anglais) ou modulation de largeur d'impulsions (MLI en frangais) est une
technique utilisée pour synthétiser des signaux pseudo analogiques a 'aide de circuits numériques.

Instructions pour lire le signal appliqué a une broche :
v' analogRead () sur une entrée analogique (A0 a A5) (tension délivrée par un capteur par exemple) ;
v' digitalRead() sur une entrée numérique (D2, D4, D7, D8, D12, D13).

Instructions pour envoyer un signal a une broche :
v' analogWrite () sur une broche numérique PWM simulant un signal analogique (D3, D5, D6, D9, D10, D11) ;
v digitalWrite () sur une broche numérique.

Définir le comportement d’une broche (entrée ou sortie) : pinMode (broche, mode) avec mode = INPUT ou OUTPUT.

PC Tutoriels_Python_Arduino.docx 17/22

Carte Arduino Uno - Caractéristiques techniques

Conversion analogique - Numérique

[E Convertisseur analogique numérique (CAN ou ADC pour analog-to-digital-converter en anglais) n bits : une grandeur analogique]

appliquée au CAN est discrétisée sur 2" valeurs (de 0 a 2" -1).

La carte Arduino UNO est équipée d’'un CAN 10 bits : on dispose donc de 2'° = 1024 valeurs, de 0 4 1023, pour représenter la

grandeur analogique appliquée sur une broche.
La fonction analogRead () renvoie la valeur binaire issue du CAN.

@ 1l faudra donc convertir 1a valeur binaire en fonction des caractéristiques du signal envoyé pour accéder 2 la valeur physique de la

grandeur mesurée.

Modulation de largeur d’impulsion (sorties PWM)

Modulation de largeur d’impulsion (schéma ci-contre) : en faisant varier le rapport cyclique
(durée du niveau haut / durée du niveau bas) des impulsions, on fait varier la valeur moyenne
du signal.

C’est cette valeur moyenne qui simule un signal analogique. Le rapport cyclique pouvant
varier rapidement, la valeur moyenne peut également évoluer au cours du temps et simuler un
signal analogique variable dans le temps.

Sv

Oov

Sv

Pulse Width Modulation

0% Duty Cycle - analogWrite(0)

25% Duty Cycle - analogWrite(64)

ov It

Sv

Ov

Sv

50% Duty Cycle - analogWrite(127)

75% Duty Cycle - analogWrite(191)

Oov

100% Duty Cycle - analogWrite(255)
N f f 1

F-

Sv
Ov

|

PC Tutoriels_Python_Arduino.docx

18/22

Arduino IDE

(©. o)
Sélectionner le type de carte Arduino et le port sur lequel elle est connectée dans la liste déroulante « Select Board ». .

Un programme Arduino est appelé « sketch » (parfois traduit par « croquis » ou « esquisse »), I’extension de fichier est

11 est tapé dans la zone d’édition de I’interface, il doit &tre compilé (transformation du code source en fichier binaire) puis téléversé

sur la carte.

Des informations sur le processus de compilation sont affichées dans 1’onglet « Output » sous 1’éditeur (éventuelles erreurs, statut final,
mémoire disponible...).

| Verify / upload | | Open serial monitor

\ad | sketcH decl2a | Arduine IDE 2.3.6 —
File| Edit | Sketch Tools Help Select board and port

sketch_dec12aino

| Sketchbook —
1 woid setup() {
2
Board manager — 1
| £ |_ :) Instructions d’initialisation Open serial plotter
. 5
| Library manager '—— - oid Toop() {
- - = L
Debugger = 8 - P
| 2e |_ g 1 Instructions répétées en boucle (infinie)
18)
| Search }——

Utile en cas d’erreur de compilation :

Qutput

Serial monitor

Ligne et colonne de I’erreur (déplacer le curseur dans 1’éditeur)

Ln1,Col1 X Noboardselected 0 B

Sketchbook : programmes enregistrés sur 1’ordinateur.
Board manager : packages nécessaires avec certaines cartes d’extension ajoutées sur la carte Arduino (WiFi,...).
Library manager : librairies/modules a utiliser pour les capteurs par exemple.
Serial moniter : visualisation du flux de données issu de la carte.

Les instructions Serial.print() et Serial.println() permettent d’écrire dans le moniteur série.

Serial Plotter : visualisation de graphes.

Connexion de la carte a un ordinateur

> Editeur

4
\

>M0niteur série

—

Brancher la carte et lancer I'IDE.

Sélectionner la carte et le port dans la liste déroulante (cf. ci-contre).

En cas de non détection, essayer de changer de port et de relancer I'IDE.

Créer un nouveau sketch (File / New Sketch) ou ouvrir un sketch enregistré (le dernier
utilisé est préchargé).

Taper ou modifier le code ; 1’aide en ligne est abondante.

Compiler le code .

Si tout se passe bien un message s’affiche en blanc (sinon lire le message affiché en
rouge et remédier aux problemes) :

Output

Le croquis utilise 1676 octets (5¥) de 1'espace de stockage de programmes. Le maximum est de 32256 octets.

Les variables globales utilisent 216 octets (10%) de mémoire dynamique, ce qui laisse 1832 octets pour les variables locales.

N R W N

o o

File Edit Sketch Tools

sketch_deX]

& sketch_deci2a | Arduino IDE 2.2.6

HElp

¥ Arduino Uno

& Arduino Uno

Le maximum est de 2048 octets.

Téléverser le code .

. A . . [EeE . . .
Cliquer sur I’icone du moniteur série . ou sur I’onglet « Serial Monitor » s’il est déja ouvert.

PC

Tutoriels_Python_Arduino.docx

19/22

Mémento langage Arduino C++ @

// Commentaire sur une ligne

void setup() {

// Initialisation : instructions exécutées une seule fois
Instructionl;

Instruction?2;

}

void loop () {
// Instructions répétées en boucle infinie
Instruction3;

}

B R
HowOJoUaWwWNR

[y
N

void : en C++, le mot-clé void indique qu'une fonction ne renvoie pas de valeur (cf. autres exemples de fonctions page 11).

Les délimiteurs sont les accolades (analogue a I’indentation en python).
A Erreur : Compilation error: expected '} at end of input (par exemple).

Chaque instruction doit se terminer par un point-virgule (en python, uniquement pour séparer 2 instructions sur une méme ligne).
A Erreur : Compilation error: expected ';' before

nn nnn

Commentaires sur une seule ligne : / (# en python) ; multilignes /* ... */ (""" ... en python).

Noms de variables
Caracteres utilisables : _, 0, 1,2, ...,9, A, B, ..., Z, a, b, ..., z (commence toujours par une lettre ou un tiret bas « _ »).

Types
Entiers short (2 octets 277 <n<2” —1, 16 bits) 215 =32 768
unsigned short (2octets 0sn<2"°-1)
char (1 octet 27 <n<2" -1 , 8 bits) ('A' et 65 sont équivalents, codage ASCII)
byte (1 octetOSnSZS—l)
int, unsigned int dépend du microcontrdleur (16 bits sur Arduino Uno)
long (4 octets 27" <n<2” -1, 32 bits)
unsigned long (4octets 0sn<2”-1)
bool ou boolean deux valeurs true ou false (sans majuscule au contraire de python)
Flottants : float (9,4039548.10738 a 3,4028235.10*%8, 32 bits) Ex : 1.5e-2
Chaines : https://docs.arduino.cc/language-reference/en/variables/data-types/string/
Affectation

Comme en python, le symbole d’affectation est le signe égal : « = ».

Déclaration des variables et types
Dans le langage C le type et les variables doivent étre déclarés.
A Erreur : ‘nom_variable’ was not declared in this scope.

int i; // Déclaration sans affectation (I’affectation aura lieu plus loin dans le programme)
float pi = 3.14; // Déclaration et affectation simultanées
char ¢ = 'a';
Opérateurs
+, -, *, /, % (reste division enticre)

== (test d'égalité), ! = (test de différence), <, >, <=, >= (tests de comparaison)

! (négation), | | (ou), && (et)

Raccourcis
i=i+1; < i++; i=i-1; = i——;
a=a+tb; = a+=b; a=a-b; = a-=b;

PC Tutoriels_Python_Arduino.docx 20/22

Instruction conditionnelle

if (conditions) {instructions}
else if (conditions) {instructions} (instruction else if facultative, peut étre répétée)
else (conditions) {instructions} (instruction else facultative)

Rq : il existe une instruction conditionnelle multiple switch...case

Boucles
while (conditions) {instructions}
for (i=0;1i<100;i=i+1) {instructions} (par exemple)

Rq : il existe une boucle do...while

Tableaux
La taille des tableaux doit étre une constante.

type nom_tableaul[dimension]

Exemples :
int liste[10];
float L[3] = {1.1, 2.2, 3.3};

Acces via I’indice/index (la numérotation commence a 0 comme en python) : nom_tableaulindice]

Directives de compilation
Une directive de compilation indique au compilateur de procéder a des opérations préalables au début de la compilation.
Ces directives se situent en tout début du programme source.

#include <fichier> / / Inclure des librairies (analogue a import en python)
#include "fichier.h" // Autre syntaxe
#define alias valeur // Remplace alias par valeur
Exemple : #define capteurl AQO analogue a const int capteurl = A0 mais gain de mémoire avec define.

Const
Ce mot clé permet de définir une variable qui, une fois initialisée, ne pourra plus étre modifiée.
Exemple :
Const float pi = 3.1415 ;
X =2 * pi ;

Aide en ligne https://docs.arduino.cc/language-reference/

Fonctions https://docs.arduino.cc/language-reference/#functions
Variables https://docs.arduino.cc/language-reference/#variables
Structure https://docs.arduino.cc/language-reference/#structure

Transfert des données - Annexes techniques

Port série — Cf. « Découvrir en expérimentant » et tutoriels détaillés.
Un port série, également appelé port COM, est un type d'interface informatique qui permet la communication entre un ordinateur
et des périphériques externes. Il s'agit d'un port physique sur un ordinateur ou un appareil qui permet d'envoyer et de recevoir des
données bit par bit et séquentiellement sur un seul fil.

Ouverture et écriture dans le port série

Serial.begin (v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. exemple 1).

Serial.print (s) Ecrire la chaine s sur la ligne courante (a la suite de la derniére chaine écrite si elle existe) ou sur
une nouvelle ligne sinon sans retour a la ligne.

Serial.println(s) Ecrire la chaine s sur la ligne courante (a la suite de la derniere chaine écrite si elle existe) ou sur
une nouvelle ligne sinon puis retour a la ligne.

Time

11 est parfois nécessaire d’indiquer au microcontrdleur un délai d’attente (entre une mesure et son traitement par exemple).

delay (n) Attendre n ms (millisecondes).

millis () Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

Fichiers et caracteres de codage « invisibles » — « Découvrir en expérimentant » et tutoriels détaillés.
Les fichiers comportent des caracteres « invisibles » (on peut les visualiser dans un éditeur de texte tel que Notepad++).
Il s’agit par exemple des caracteres qui provoquent un retour a la ligne, en python : \n (systeme Linux), \r\n (Windows), \r (Mac).
La bibliotheque python serial (https://pyserial.readthedocs.io/) permet de lire les lignes écrites dans le port série :
ligne = serial.Serial(port_serie, vitesse). readline() (lecture et stockage du résultat dans une variable nommée ligne).
Les données lues dans le port série sont au format binaire, ligne.decode("utf-8") permet de décoder ce format.

@ Ces informations sont utiles lorsqu’il s’ agit de sauvegarder des données lues sur le port série dans un fichier texte.

PC Tutoriels_Python_Arduino.docx 21/22

PC

Tutoriels_Python_Arduino.docx

22/22

