
PC Tutoriels_Python_Arduino.docx 1/22

 Tutoriels Python - Arduino

��� Version en ligne avec liens vers les fichiers individuels : https://gillesbeharelle.fr/deuxColonnes/table_liens_python_arduino

Arduino – Découvrir en expérimentant

��� Arduino – Exemples

Ecrire dans le port série

���� Serial.begin(v), Serial.print(s), Serial.println(s), delay(n)

Lire des données dans le port série avec Python

���� millis()

Acquisition d’un flux de données analogiques

���� analogRead(pin)

Acquisition de données numériques

���� pinMode(pin, mode), digitalRead(pin)

Sortie numérique PWM simulant un signal analogique

���� analogWrite(pin, niveau)

Sortie analogique commandée par une entrée analogique

���� map(pin, a, b, x, y)

Acquisition de données analogiques et entrées clavier

���� Fonctions, #define, Serial.parseFloat()

Moteur de Stirling – Tracé d’un cycle (P, V)

���� Tests, opérateurs logiques

Arduino – Mémento

��� Arduino – Mémento

Microcontrôleurs

Carte Arduino Uno - Brochage

Carte Arduino Uno - Caractéristiques techniques

Arduino IDE – Editeur – Moniteur série

Connexion de la carte à un ordinateur

C++ Arduino - Mémento

��� Mémento – Langage C++

void, setup(), loop()

Syntaxe

Types, opérateurs

Boucles, instructions conditionnelles

Tableaux

Port série, Serial.begin(v), Serial.print(s), Serial.println(s)

PC Tutoriels_Python_Arduino.docx 2/22

Python – Tutoriels détaillés

��� Python – Fichiers texte

Structure des fichiers texte

Principe de l’extraction de données dans un fichier texte

Ouverture d'un fichier : modes lecture, écriture ou ajout

Lecture d'un fichier

Lecture d'un fichier – Traitement des données et stockage

��� Python – Acquisition de données via le port série

Port série

Code minimal - Test du port série et visualisation des données dans le shell python

Détection automatique du port série

Traitement des données – Stockage des données dans une liste puis un tableau numpy

PC Tutoriels_Python_Arduino.docx 3/22

 Ecrire dans le port série

	
��
 Application : visualiser et transmettre des données en cours d’acquisition (acquisitions réelles à suivre)

Le sketch suivant illustre la communication entre la carte Arduino et le port série de l’ordinateur (physiquement, via le câble USB).

���� Instructions

Serial.begin(v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. ci-dessous).

Serial.print(s) Ecrire la chaîne s (ligne courante si existante ou nouvelle ligne sinon) sans retour à la ligne final.

Serial.println(s) Ecrire la chaîne s (ligne courante si existante ou nouvelle ligne sinon) puis retour à la ligne.

delay(n) Attendre n ms (millisecondes).

��� Vérifier que la vitesse de transmission indiquée dans le port série correspond à la vitesse indiquée dans le sketch sous peine

de ne rien voir s’afficher.

Remarque : la boucle étant infinie, le flux dans le port série est ininterrompu.

������� Que signifie l’instruction !Serial (ligne 9) ?

Quelle est la différence entre les instructions print() et println() ? Ne pas hésiter à modifier le code pour effectuer des tests.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

/*
 Exemple 1 - Ecrire dans le port série

*/

void setup() {
// Ouverture port série - vitesse transmission (en baud = bit/s)
Serial.begin(9600);
// Tant que le port série n’est pas prêt, attendre 100 ms
while (!Serial) {
 delay(100); // Attendre 100 ms
 }
}

void loop() {
Serial.print("Arduino "); // Affichages les uns …
Serial.print("tuto "); // … à la suite des autres (même ligne)
Serial.println("Hello world!"); // Affichage puis retour à la ligne
delay(1000); // Attendre 1000 ms
}

PC Tutoriels_Python_Arduino.docx 4/22

 Lire des données dans le port série avec Python

Prérequis :
��� Ecrire dans le port série

	
��
 Application : récupérer via python un flux de données, les visualiser en cours d’acquisition et les sauvegarder

���� Instructions

millis() Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

������� Ecrire un programme (dans l’IDE Arduino) permettant de simuler un flux de données dans le port série en respectant le

cahier des charges ci-dessous. La boucle simulant les mesures est interrompue lorsqu’un temps maximum (défini dans le

sketch) est atteint.

Le programme doit :

- définir une variable tMax = 5000 représentant la durée totale du processus de « mesure » ;

- initialiser une variable t0 en capturant le temps au début de la boucle loop() (cf. instruction millis() ci-dessus) ;

- initialiser un compteur de mesures nommé cpt au début de la boucle loop();

- initialiser une variable ti = t0 représentant l’instant d’acquisition de la mesure n° i ;

- exécuter en boucle les instructions suivantes tant que la durée du processus n’excède pas le temps maximal :

- attendre 100 ms ;

- incrémenter le compteur de mesures ;

- capturer la nouvelle valeur de ti ;

- calculer le temps écoulé t depuis t0 en s ;

- calculer une expression quelconque à partir de ce temps (relation affine par exemple) afin de simuler la mesure d’une

grandeur au cours du temps (utiliser une variable nommée mesure_capteur) ;

- écrire les valeurs de t, mesure_capteur et cpt dans le port série (séparés par des points-virgules).

- écrire "Stop" dans le port série une fois la boucle précédente achevée.

Programme Python (tutoriels détaillés : documents « Python – Fichiers texte » et « Python – Acquisition de données via le port série »)

���� Protocole

1. Téléverser le sketch sur la carte Arduino.

2. Fermer le moniteur série Arduino (ne pas déconnecter la carte du port USB).

3. Vérifier le paramétrage lignes 4 (port) et 5 (vitesse de transmission) dans le programme python.

4. Exécuter le programme python : les données lues doivent s’afficher dans le shell.

5. Vérifier le contenu du fichier en l’ouvrant (possible depuis pyzo).

��� L'onglet "Serial Monitor" doit rester fermé pour que python puisse ouvrir le port série.

Erreur python : serial.serialutil.SerialException: could not open port 'COM3': PermissionError(13, 'Accès refusé.', None, 5)

	
��
 Il existe de nombreuses façons d’interrompre la lecture dans le programme python (durée d’acquisition, nombre de mesures…) qui

ne nécessitent pas d’inclure dans le sketch Arduino l’envoi d’une instruction particulière.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

import serial

Communication
port_serie = 'COM3' # Cf. Arduino IDE (port sélectionné)
bauds = 115200 # Cf. sketch arduino : Serial.begin(bauds)
Enregistrement des mesures
dossier = "" # Dossier courant (dossier de ce fichier python)
nom_fichier = "exemple2.txt" # A personnaliser – Préférer un chemin ABSOLU
chemin = dossier + nom_fichier

ps = serial.Serial(port_serie, bauds) # Ouverture du port série
fichier = open(chemin, "w+") # Ouverture du fichier en écriture
while True: # Boucle "infinie"
 ligne = ps.readline() # Lecture d'une ligne sur le port série
 ligne = ligne.decode("utf-8") # readline -> binaire, conversion
 ligne = ligne.strip('\n') # Traitement (suppression \n fin de ligne)
 if 'Stop' in ligne: # Message d’arrêt défini dans sketch Arduino
 break # Sortie de la boucle while
 print(ligne) # Vérification visuelle dans le shell
 fichier.write(ligne) # Ecriture de la ligne dans le fichier
fichier.close() # Fermeture du fichier
ps.close() # Fermeture du port série

PC Tutoriels_Python_Arduino.docx 5/22

 Acquisition d’un flux de données analogiques - analogRead()

	
��
 Application : enregistrer un flux ininterrompu de données analogiques

���� Instructions

analogRead(pin) Lire la valeur binaire sur la broche pin (A0 à A5), cf. brochage de la carte utilisée.

���� On applique sur la broche A0 de la carte Arduino la tension uCB entre les pattes B et C d’un potentiomètre soumis à la tension

uAB = 5 V. On fait varier cette tension manuellement en agissant sur le potentiomètre rotatif.

��� !"#$%& Convertisseur analogique numérique (CAN ou ADC pour analog-to-digital-converter en anglais) n bits : une grandeur analogique

appliquée au CAN est discrétisée sur 2n valeurs (de 0 à 2n -1).

La carte Arduino UNO est équipée d’un CAN 10 bits : on dispose donc de 210 = 1024 valeurs, de 0 à 1023, pour représenter la

grandeur analogique appliquée sur une broche. La fonction analogRead() renvoie la valeur binaire issue du CAN.

Il faut donc convertir la valeur binaire en volts dans le cas envisagé en sachant que la tension appliquée au potentiomètre est 5 V.

Schéma du circuit

La broche utilisée est la broche A0, on applique une tension au potentiomètre (47 kΩ) grâce aux broches 5V et GND de la carte.

Sketch

������� Ecrire la conversion valeur binaire / volts à la ligne 16 (proportionnalité).

��� Ligne 16 : bien écrire 1023.0 et 5.0 afin que ces nombres soient traités comme des flottants

'()* Visualiser les variations de U dans le « Serial plotter » .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

int U_binaire; // "Tension" lue : valeur renvoyée par analogRead() entre 0 et 1023
float U_Volts; // Tension vraie en volts

void setup() {
 Serial.begin(115200);
 while (!Serial) {
 delay(100);
 }
}

void loop() {
 // Lecture de la tension analogique appliquée sur la broche A0 de l'Arduino
 U_binaire = analogRead(A0);

 // Conversion en Volts (analogique de 0 à 5 V  numérique de 0 à 1023)
 U_Volts =

 Serial.println(U_Volts);

 delay(500); // Utile pour ralentir le flux de données
}

uCB

C

A

B

C

A B

PC Tutoriels_Python_Arduino.docx 6/22

 Acquisition de données numériques - digitalRead()

https://docs.arduino.cc/built-in-examples/basics/DigitalReadSerial/

	
��
 Application : enregistrer un flux ininterrompu de données numériques

���� Instructions

pinMode(pin, mode) Configurer la broche pin en entrée (mode = INPUT) ou en sortie (mode = OUTPUT).

digitalRead(pin) Lire la valeur booléenne sur la broche pin (2, 4, 7, 8, 12, 13).

���� Bouton poussoir :

- lorsque le bouton est relâché, la patte C du bouton est reliée à B donc à la terre via la résistance R, la valeur LOW = 0 est

alors lue par une broche numérique ;

- lorsque le bouton est enfoncé, la patte C du bouton est reliée au potentiel 5V en A, la valeur lue par la broche numérique

correspond alors à la valeur HIGH = 1.

Schéma du circuit

La broche utilisée est la broche 2.

Sketch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

int boutonPoussoir = 2; // Nom de variable : bouton poussoir connecté broche 2
int etatBouton;

void setup() {
 Serial.begin(115200);
 while (!Serial) {
 delay(100);
 }
 // Configure la broche 2 = boutonPoussoir en entrée (INPUT)
 pinMode(boutonPoussoir, INPUT);
}

void loop() {
 // Lecture de la broche numérique
 etatBouton = digitalRead(boutonPoussoir);

 Serial.println(etatBouton);
 delay(500);
}

Bouton

poussoir

R = 10 kΩ

C

A

B

PC Tutoriels_Python_Arduino.docx 7/22

Sortie numérique PWM simulant un signal analogique - analogWrite()

https://docs.arduino.cc/built-in-examples/basics/Fade/

	
��
 Application : générer un signal pseudo-analogique

���� Instructions

analogWrite(pin, niveau) Ecrire la valeur niveau sur la broche pin (~3, ~5, ~6, ~9, ~10, ~11 PWM = symbole ~).

 analogWrite() accepte des valeurs entre 0 et 255.

Modulation de largeur d’impulsion (schéma ci-contre) : en faisant varier le rapport cyclique

(durée du niveau haut / durée du niveau bas) des impulsions, on fait varier la valeur moyenne

du signal.

C’est cette valeur moyenne qui simule un signal analogique. Le rapport cyclique pouvant

varier rapidement, la valeur moyenne peut également évoluer au cours du temps et simuler un

signal analogique variable dans le temps.

���� On fait varier la luminosité d’une LED en utilisant une sortie numérique PWM à modulation

de largeur d’impulsion.

Schéma du circuit

La broche PWM utilisée est la broche ~9.

Sketch

������� Expliquer le code (lignes 15, 18 et 19).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

int led = 9; // Nom de variable : n° de la broche PWM connectée à la LED
int intensite = 0; // Niveau de luminosité
int variationI = 5; // Pas = ∆Ι de variation de l'intensité

void setup() {
 // Configure la broche 9 = led en sortie (OUTPUT)
 pinMode(led, OUTPUT);
}

void loop() {
 // Fixe le niveau de luminosité de la led en écrivant ce niveau à la broche 9
 analogWrite(led, intensite);

 //
 intensite = intensite + variationI;

 //
 if (intensite <= 0 || intensite >= 255) {
 variationI = -variationI;
 }
 delay(30);
}

R = 220 Ω

LED

PC Tutoriels_Python_Arduino.docx 8/22

 Sortie analogique commandée par une entrée analogique

	
��
 Application : générer un signal pseudo-analogique à partir d’un autre signal analogique

���� Instructions

analogRead() renvoie une valeur dans l’intervalle [0, 1023].

analogWrite() accepte des valeurs dans l’intervalle [0, 255].

La fonction map(brocheEntréeAnalogique, 0, 1023, 0, 255) permet de convertir les valeurs issues d’une broche d’entrée

analogique renvoyant des valeurs comprises entre 0 et 1023 en valeurs dans l’intervalle 0-255.

���� Cet exemple effectue une synthèse des exemples 3 et 5 et reprend le même matériel.

Le potentiomètre 47 kΩ (simulant ici un capteur) va permettre de fixer le niveau de luminosité de la LED.

������� Ecrire le code permettant de faire varier la luminosité de la LED en agissant sur le potentiomètre.

 Les valeurs lues sur la broche d’entrée et écrites sur la broche de sortie seront affichées dans le moniteur série (vérifier que les

intervalles de variation sont corrects).

R
 =

 2
2

0
 Ω

PC Tutoriels_Python_Arduino.docx 9/22

 Acquisition de données analogiques et entrées clavier

	
��
 Principe : enregistrer un signal analogique point par point avec entrées de données au clavier.

���� Instructions

void([paramètres]) Fonction ne renvoyant rien (avec ou sans paramètres)

type nom_fonction([paramètres]) Fonction renvoyant en résultat (return valeur)

Serial.parseFloat() Renvoie un flottant lu dans le port série

���� Application : mesure de pression (capteur Elab-PA) et de volume (clavier).

Carte Educaduino (Arduino Mega) avec capteur de pression absolue :

Le volume est lu sur la seringue et la valeur sera entrée au clavier.

Le capteur de pression absolue Elab-PA renvoie sur la broche A9 une valeur de type float codée sur 10 bits donc comprise dans

l’intervalle [0, 1023] correspondant à une pression (en Pa) dans l’intervalle [20 000, 400 000] (i.e. entre 200 et 4000 hPa).

Il faut donc définir une fonction permettant de calculer la pression réelle P à partir de la valeur mesurée V :

P aV b= + où
max min

max min

P P
a

V V

−
=

−
 et

max max
b P aV= − avec Pmax = 400000, Pmin = 20000, Vmax = 1023.0, Vmin = 0.0.

�������Ecrire le croquis (ou esquisse ou sketch) permettant d’entrer les valeurs de volume au clavier et de mesurer la pression avec le

capteur et d’afficher les données dans le moniteur série.

 Exploitation rapide : copier les données directement dans le moniteur série à l’aide du bouton :

Coller dans un fichier texte (Notespad++, Bloc-notes) et enregistrer au format texte (.txt).

Exploiter dans Régressi : tracer le produit PV en fonction de V. La loi de Mariotte est-elle vérifiée ?

Sauvegarde des données dans un fichier : cf. « Lire des données dans le port série avec Python ».

	
��
 Aide

Le sketch page suivante permet de réaliser l’acquisition de grandeurs (analogiques ou numériques) en contrôlant l’acquisition au

clavier :

- soit pour entrer des données au clavier pour une mesure difficile à effectuer via un capteur ;

- soit pour interrompre l’acquisition et effectuer un réglage entre deux mesures.

Par ailleurs, les acquisitions et les sorties sont regroupées dans deux fonctions (non indispensable mais données à titre d’exemple

afin d’illustrer la structure de programmes complexes).

PC Tutoriels_Python_Arduino.docx 10/22

Sketch (principe → code à adapter)

	
��
 A la ligne 2, #define est une directive de compilation (cf. « Arduino – Mémento »).

	
��
 A la ligne 21, on définit une fonction lecture admettant deux paramètres et renvoyant une valeur (syntaxe avec type sans void).

 A la ligne 27, on définit une fonction ecriture admettant deux paramètres et ne renvoyant aucune valeur (void sans type).

 L’ordre d’écriture des fonctions est sans importance.

	
��
 A la ligne 15, la boucle est interrompue tant que rien n’est entré au clavier dans la zone de saisie (copie d’écran ci-dessous).

Après validation, les lignes 16 et 17 sont exécutées et la boucle recommence.

 Lignes 15 et 28 des conversions sont effectuées car les données transitant par le port série sont des chaînes (lecture et écriture).

���Bien sélectionner ‘No Line Ending’ dans le moniteur série.

Sans cette précaution, deux lignes apparaissent à chaque saisie.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

// Un seul capteur dans cet exemple : entrée analogique A0
#define capteurPin A0 // Broche Arduino utilisée

float capteurValeur; // Variable de stockage de la valeur capteur
float entreeClavier; // Données clavier issues du port série

void setup() {
 Serial.begin(115200);
 while (!Serial) {;}
 Serial.println("\nEntrée clavier;Capteur"); // Colonnes (en-tête fichier)
 }

void loop() {
 if (Serial.available() > 0) { // Si données dans le port série
 entreeClavier = Serial.parseFloat(); // Conversion données port série
 capteurValeur = lecture(capteurPin); // Lecture capteur
 ecriture(entreeClavier, capteurValeur); // Ecriture dans le port série
 }
}

float lecture(int broche) {
 float valeurMesuree = analogRead(broche) / 1023.0 * 5.0; // Conversion
 delay(2); // delai (ms) pour laisser le CAN réagir
 return valeurMesuree;
}

void ecriture(float c, float v) {
 Serial.print(c);
 Serial.print(";");
 Serial.println(v);
}

Zone saisie clavier

PC Tutoriels_Python_Arduino.docx 11/22

 Moteur de Stirling – Tracé d’un cycle (P, V)

	
��
 Principe du moteur Stirling (Robert et James Stirling 1816)

Le moteur Stirling est un moteur à combustion externe (toute source de chaleur peut être utilisée : énergie solaire, énergie

géothermique, énergie nucléaire…) et à fluide de travail en cycle fermé (l’air interne au moteur ne sort jamais de celui-ci).

Les moteurs thermiques usuels sont à combustion interne en cycle ouvert.

La spécificité de ce moteur réside dans un régénérateur (échangeur thermique interne) qui améliore son efficacité.

Moteur Stirling de type bêta

Le moteur comporte deux pistons, un piston de travail ou piston moteur et un piston « déplaceur » reliés à la roue d’inertie via

deux bielles fixées à la roue grâce à deux manetons décentrés par rapport à l’axe de rotation de la roue (cf. schéma ci-dessous).

Cet embiellage crée pour le piston moteur un retard de phase de π/2 (un quart de tour) par rapport au piston déplaceur.

Le piston déplaceur (de plus petit diamètre que le cylindre) possède un double rôle :

- faire passer alternativement le gaz de la source chaude à la source froide (ailettes de refroidissement dans l’air ambiant) ;

- contribuer à réchauffer ou refroidir l’air au cours de ses transformations.

Bien distinguer l’air du côté piston moteur-source froide de l’air du côté source chaude pour analyser le fonctionnement.

Piston déplaceur en position basse

La totalité de l’air, encore chaud, est au contact de la source froide : sa température baisse ainsi que sa pression. Puis il commence à être refoulé

vers la source chaude par les deux pistons qui se rapprochent tandis que le piston déplaceur se refroidit au contact de la source froide.

Le volume entre les deux pistons diminue : la compression du volume « moteur » s’effectue au contact du déplaceur refroidi, la compression

est isotherme (V↓, P↑ à T = constante).

Point mort bas

Piston de travail en position basse

Au voisinage du point mort bas, le volume « moteur » varie peu autour de son minimum : la compression est isochore. L’air est progressivement

transféré du côté de la source chaude par le piston déplaceur qui se rapproche de sa position la plus haute.

Piston déplaceur en position haute

L’air réchauffé dont la pression a augmenté commence à repousser le piston moteur tandis que le déplaceur contribue à le transférer vers le

piston moteur réchauffant au passage le piston déplaceur. Les pistons s’éloignent, le piston moteur est refoulé par l’air chaud dont la pression

va diminuer. Le piston déplaceur est alors au contact de la source chaude : la phase motrice est une détente isotherme (V↑, P↓ à T = constante).

Point mort haut (PMH)

Piston de travail en position haute

Au voisinage du point mort haut, le volume « moteur » varie peu autour de son maximum et l’air du côté « moteur » est au contact de la source

froide, il se refroidit et sa pression diminue : la détente est isochore. Le piston déplaceur transfère progressivement l’air vers la source froide.

Piston déplaceur

Source chaude à TC

Source froide à TF Bielle reliée au piston de travail

Bielle reliée au piston déplaceur

Roue-volant d’inertie

Circulation de l’air

autour du piston déplaceur

Manetons

Piston de travail

PC Tutoriels_Python_Arduino.docx 12/22

Moteur Stirling de type gamma

Dans un moteur de type gamma, le fonctionnement est plus facile à

appréhender car les deux pistons évoluent dans deux cylindres séparés mais

en communication l’un avec l’autre (schéma ci-contre et photo ci-dessous).

Dans ce moteur, le régénérateur est la plaque en métal entre les deux

cylindres.

Modélisation du cycle de Stirling

On note a le taux de compression défini par :
max

min

V
a

V
= .

On suppose que l’air est un gaz parfait.

En l’absence de régénérateur, le rendement de ce moteur est :

�������

ln
1

1

ln
1

C F

F

sr

C F

C

T T
T a

T T
T a

γη

γ

−
+

−
= −

−
+

−

.

En présence d’un régénérateur parfait, on suppose que celui-ci récupère entièrement l’énergie nécessaire au réchauffage isochore

(de 4 à 1) au cours du refroidissement isochore (de 2 à 3) : le piston déplaceur est effectivement au voisinage de la source chaude de

2 à 4 de façon à restituer l’énergie emmagasinée de 4 à 2.

������� L’efficacité devient alors : 1 F

ar

C

T

T
η = − .

On reconnaît l’efficacité de Carnot valable pour un cycle ditherme réversible appelé cycle de Carnot et constitué de deux isothermes

et de deux isentropiques. Cependant le cycle de Stirling n’est pas un cycle de Carnot car constitué de deux isothermes et de deux

isochores et n’est pas ditherme en raison des échanges avec le régénérateur.

Néanmoins ce résultat permet de comprendre que le rendement est amélioré en présence du régénérateur (qui ne saurait être parfait

en pratique).

PMH – Vmax pour le piston moteur

Vmin pour le piston moteur

PMH

PC Tutoriels_Python_Arduino.docx 13/22

���� Moteur Stirling instrumenté

Deux fourches optiques permettant de déterminer la position de la roue d’inertie et un capteur de pression sont reliés à une carte

Arduino Uno.

Données techniques

Mouvement d’entrée : ()t tθ ω= (sens + = sens horaire de rotation)

L’angle θ est connu grâce aux deux fourches optiques (cf. ci-dessous).

On en déduit :
2

i
π

θ δθ= + × (observer le passage du PMH la fourche 2)

������� Le volume du cylindre moteur est alors :

()[] ()
2 2

2 2 2
sin cos

4 4
cyl

D D
V OB L R R L R L R

π π
θ θ= − − = + − − − 

 

Distances / longueurs en mm

Longueur de la bielle du piston de travail : L = 55 mm

Ecart OA du maneton de bielle moteur à l’axe de la roue d’inertie : R = 2 mm

Diamètre du piston de travail : D = 19 mm

Nombre de fentes découpées dans la roue d’inertie : N = 50  Angle entre deux fentes successives : δθ = 2π / N

Parmi ces fentes, une est plus longue et permet de détecter le passage par le point mort haut (PMH) (position du piston de travail la

plus haute donc volume maximum). Cette fente est détectée par la fourche optique n°2 (et par la fourche n°1).

A chaque passage d’une fente devant la fourche optique n°1, une mesure de pression est enregistrée.

Au cours d’un tour de la roue d’inertie, on dispose de 50 triplets de la forme (i, kPMH, δPdiscr) où :

 i est le numéro de la fente comptée à partir du PMH (celui-ci correspond à i = 1) ;

 kPMH est le nombre de tours effectués par la roue (i.e. le nombre de passage de la fente la plus longue devant la fourche 2) ;

 δPdiscr est la pression différentielle (différence entre la pression atmosphérique et la pression dans le cylindre).

Une surpression nulle correspond à 2,5 V pour une alimentation entre 0 et 5V.

La tension de sortie Ucapteur est discrétisée par le CAN 10 bits de la carte Arduino et fournit la valeur δPdiscr.

Capteur de pression

relié à la carte
Carte Arduino Uno

et son « shield »

Roue d’inertie
Fourche optique n°1 :

détection des 50 fentes courtes

Fourche optique n°2 :

détection de la fente correspondant au PMH
Piston de travail

Piston déplaceur

Surfaces d’échange

thermique

Repère de point mort

haut (PMH)

Prise de pression

L
R

L

R

Guidage en translation

réalisé par le cylindre

Axe de la

roue d’inertie

D

PC Tutoriels_Python_Arduino.docx 14/22

	
��
 La valeur de la pression absolue en Pa est alors :
0 0

512
5 /

1023

discr
P

P P P P Sbδ
−

= + = + × où Sb est la sensibilité du capteur.

capteur

réelle

U
Sb

P

δ

δ
= = 1,03 V/kPa = 1,03/1000 V/Pa.

Par ailleurs, le volume minimal du cylindre moteur est Vmin = 55 660 mm3 hors volume mort (volume ajouté par la prise de pression).

Le volume réel du cylindre est donc : ()
2

2 2 2

min sin cos
4

D
V V R L R L R

π
θ θ= + − − − +

 
.

Sketch

Hypothèse : la fréquence des mesures est supérieure à la fréquence de rotation, i.e. tous les changements d'état des fourches optiques

sont détectés.

	
��
 Le programme ne commence à écrire les données qu’à partir d’une détection du PMH de façon à disposer des valeurs

correspondant à un cycle entier et on définit par ailleurs un nombre maximum de cycles à enregistrer.

��� Ligne 11 : pour les tests, utiliser une valeur « raisonnable » pour la variable cpt2Max (3 ou 4).

 Noter que la numérotation débute à 0 mais que le cycle n°0 sera ignoré car incomplet donc le premier cycle enregistré aura le

n°1 et que le dernier aura pour n° cpt2Max-1 (donc 10 cycles complets avec cpt2Max = 11) .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

#define capteurPression A0 // Capteur de pression sur la broche A0
#define fourche1 A1 // Fourche optique n°1 sur la broche A1
#define fourche2 A2 // Fourche optique n°2 sur la broche A2 (détection PMH)
#define sepCol ";" // Séparateur de colonnes -> identique dans pgm python

int compteur1 = 0; // Compteur fourche optique n°1 (permet de calculer le volume)
int compteur2 = 0; // Compteur fourche optique n°2 (nombre de passages par le PMH)
int etatFourche1; // Etat de la fourche optique n°1
int etatFourche2; // Etat de la fourche optique n°2
int memoire1 = LOW; // Mémoire de l'état de la fourche optique n°1
int memoire2 = LOW; // Mémoire de l'état de la fourche optique n°2
unsigned long t; // Instant de mesure
int cpt2Max = 11; // Nbre de tours à enregistrer (nombre de lignes à lire par python)

void setup() {
 Serial.begin(115200);
 pinMode(fourche1,INPUT); // Configure la broche de la fourche n°1 en lecture
 pinMode(fourche2,INPUT); // Configure la broche de la fourche n°2 en lecture
 while (!Serial) {;} // Ne rien faire tant que port série non disponible
}

void loop() {
 while (compteur2 < cpt2Max) {
 // Détection du passage de la fenêtre du PMH devant la fourche optique n°2
 etatFourche2 = digitalRead(fourche2); // Lecture de l'état de la fourche n°2
 // Si état fourche 2 différent de état enregistré ET état "haut" (faisceau détecté)
 if((etatFourche2 != memoire2) && (etatFourche2 == HIGH)) {
 compteur2++; // On incrémente le compteur2 (nbre de passages par le PMH)
 compteur1 = 0; // On remet le compteur1 à zero (angle dans [0, 2*pi])
 }
 // Détection du passage d'une des 50 fenêtres devant la fourche optique n°1
 etatFourche1 = digitalRead(fourche1); // Lecture de l'état de la fourche n°1
 // Si état fourche 1 différent de état enregistré ET état "haut" (faisceau détecté)
 // La condition compteur2 > 0 permet de démarrer la transmission sur un PMH
 if((etatFourche1 != memoire1) && (etatFourche1 == HIGH) && (compteur2 > 0)) {
 compteur1++; // On incrémente le compteur1
 t = micros(); // Instant de mesure en µs
 // Affichage des quadruplets de valeurs de compteur1, compteur2, pression, t
 Serial.print(compteur1); Serial.print(sepCol);
 Serial.print(compteur2); Serial.print(sepCol);
 Serial.print(analogRead(capteurPression)); Serial.print(sepCol);
 Serial.println(t);
 }
 // Mémorisation des états pour détecter les changements à la lecture suivante
 memoire1 = etatFourche1;
 memoire2 = etatFourche2;
 }
 Serial.println("Stop");
 while (true) {;}
}

PC Tutoriels_Python_Arduino.docx 15/22

Programme Python Ressources :

���� Le sketch Arduino et le programme python à compléter sont disponibles en téléchargement via le QRcode (lien vers la rubrique

TP de gilles.beharelle.fr) : Tutoriels Python – Arduino, à la rubrique Arduino – Découvrir en expérimentant : Moteur de Stirling.

������� Compléter le code de la fonction calcul_PV (directement dans Pyzo ou Spyder)

������� En lisant le code du programme fourni, déterminer les noms des tableaux/listes contenant les données :

- au format texte (tableau 1D de lignes) ;

- au format numpy (tableau 2D).

	
��
 Des informations supplémentaire concernant la fonction portArduino sont disponibles via le lien précédent (Tutoriels Python –

Arduino, à la rubrique Python – Tutoriels détaillés : Acquisition de données via le port série).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

import serial
import serial.tools.list_ports
import matplotlib.pyplot as plt
from matplotlib import animation
import matplotlib.colors as mcolors
import numpy as np

calcul_PV permet de tracer :
- tous les cycles avec num_cycle=None
- un unique cycle avec num_cycle= numéro cycle souhaité
def calcul_PV(dataN, num_cycle=None, Po=1e5, unite='mm3'):
 """ dataN = tableau de lignes de la forme [i, k, Pdiscr, t]
 i = n° de la fente comptée à partir du PMH
 k = nombre de tours (nombre de passages au PMH)
 Pdiscr = pression différentielle renvoyée par CAN Arduino (bits)
 t = instant de mesure (µs)
 num_cycle = n° du cycle souhaité = l'une des valeurs de k dans data
 Po : pression atmosphérique en Pa
 unite : 'mm3' ou 'm3' ou 'SI'
 """
 assert unite in ['mm3', 'm3', 'SI'], "Unité incorrecte ('mm3', 'm3' ou 'SI)"
 if num_cycle is None: # Calculs pour tous les cycles
 data = dataN
 else: # Calculs pour le cycle spécifié par num_cycle
 assert float(num_cycle) in dataN[:,1], "n° cycle incorrect"
 data = np.array([l for l in dataN if l[1]==float(num_cycle)])

 # Caractéristiques mécaniques du moteur
 L = # Longueur bielle piston moteur (mm)
 R = # Rayon maneton bielle moteur (mm)
 D = # Diamètre piston moteur (mm)
 S = # Surface piston moteur (mm**2)
 dtheta = # Angle entre 2 fentes (rad)
 Vmin = # Volume minimum du cylindre moteur (mm**3)

 # Calcul du volume du gaz dans le cylindre moteur
 i = # n° fente à partir du PMH
 theta = # Angle correspondant à la fente n°i
 OB = # Position piston
 V = # Volume (mm**3)
 if unite in ['m3', 'SI']:
 V *= 1e-9

 # Capteur de pression différentielle
 Sb = # Sensibilité = dV/dPréelle = 1.03/1000 V/Pa

 # Pression
 dPd = # Pression différentielle discrétisée en bits
 dPv = # Pression différentielle en V
 dPr = # Pression différentielle réelle en Pa
 P = # Pression absolue en Pa

 # Instant de mesure
 t = # t en µs (cf. sketch Arduino)

 return P, V, t

PC Tutoriels_Python_Arduino.docx 16/22

���� La dernière cellule du programme python fourni permet de sauvegarder dans un fichier texte les données volatiles (perdues lors

d’un redémarrage du noyau python par exemple).

���� Acquisition des données

1. Brancher la carte Arduino sur un port USB du PC (à l’arrière du PC et non en façade).

2. Téléverser le sketch sur la carte, prendre cpt2Max = 3 .

3. Afficher le moniteur série et faire tourner délicatement le moteur dans le sens indiqué page 3 de ce document : les données

apparaissent dans le moniteur série (relancer le moteur si nécessaire tant que l’affichage n’est pas interrompu).

4. Fermer le moniteur série.

5. Identifier la variable en relation avec cpt2Max dans le programme python et ajuster sa valeur.

6. Exécuter le programme python et relancer le moteur à la main comme à l’étape 3 : les données sont affichées dans le shell

puis un cycle est tracé.

7. Modifier la variable cpt2Max du sketch (prendre 11 par exemple) et la variable python correspondante.

8. Poser le moteur sur une tasse d’eau chaude, attendre quelques secondes puis le lancer très doucement comme à l’étape 3

s’il ne démarre pas seul.

9. Exécuter le programme python.

10.
��� Lorsque le moteur s'arrête poser le moteur sur un chiffon et non sur la paillasse.

11. Sauvegarder l’acquisition dans un fichier (effectuer une nouvelle acquisition si nécessaire).

12. Ouvrir le fichier (possible depuis l’explorateur de fichiers de Pyzo) et vérifier que les données sont correctes : pas de lignes

tronquées ou sautées, nombre entier de cycles complets (la première colonne doit varier de 1 à 50 de façon cyclique).

������� Ecrire un programme permettant de lire, traiter les données du fichier de sauvegarde et les sauvegarder au format texte dans une

liste nommée dataFichier (cf. Tutoriels Python – Arduino, à la rubrique Python – Tutoriels détaillés : Fichiers texte).

Transformer cette liste en tableau numpy nommé dataFichierN.

Vérifier que la fonction calcul_PV permet de tracer le(s) cycle(s).

������� Traitement des données – Aspects thermodynamiques

13. Définir « à la main » (en analysant les données d’un cycle) ou écrire une fonction permettant de déterminer les index des

volumes minimum et maximum dans la liste des volumes au cours d’un unique cycle.

14. Ecrire une fonction aire(x, y) permettant de calculer l’aire sous la courbe y(x) par la méthode des trapèzes.

15. Ecrire une fonction puissance(numCycle) permettant de déterminer la puissance fournie par le moteur au cours du cycle

n°numCycle (cette fonction appellera la fonction calcul_PV de façon à disposer des données pour ce cycle en précisant que

l’unité doit être m3).

16. Tester cette fonction.

17. Ecrire une fonction puissanceMoyenne(tab) permettant d’obtenir la puissance moyenne calculée sur tous les cycles

disponibles dans le tableau de données tab.

���� Prolongements

18. Imaginer un protocole permettant d’estimer le rendement de ce moteur.

PC Tutoriels_Python_Arduino.docx 17/22

 Arduino - Mémento

Introduction aux microcontrôleurs

Arduino est la marque d'une plateforme de prototypage open-source qui permet aux utilisateurs de créer des objets électroniques

interactifs à partir de cartes électroniques équipées d’un microcontrôleur.

Un microcontrôleur est un circuit intégré qui intègre les éléments essentiels d'un ordinateur : processeur, unités périphériques et

interfaces d'entrées-sorties. Les microcontrôleurs se caractérisent par un plus haut degré d'intégration (taille réduite), une plus faible

consommation électrique et un coût réduit par rapport aux microprocesseurs polyvalents utilisés dans les ordinateurs personnels.

Un microcontrôleur peut être programmé pour analyser et produire des signaux électriques.

Ils sont utilisés dans les systèmes embarqués pour piloter des robots, dans les voitures, les avions, les récepteurs GPS, les

télécommandes, l'électroménager, les jouets, la téléphonie mobile, la domotique, etc.

Dans le cas d’Arduino, les langages de programmation utilisés sont C et C++.

Un IDE (environnement de Développement Intégré) Arduino permet d’écrire et de téléverser les programmes dans la mémoire ROM

du microcontrôleur (cf. ci-dessous).

Rq : Pyzo ou Spyder sont des IDE pour Python, VisualStudio est un IDE multi langages.

Le microcontrôleur des cartes Arduino utilise deux types de mémoires.

 Une mémoire morte (ROM, pour l'anglais read-only memory), une mémoire au contenu non volatile utilisée pour enregistrer

des informations qui doivent être conservées lorsque l'appareil qui les utilise n'est plus sous tension.

La carte Arduino utilise une EEPROM (Electrically-Erasable Programmable Read-Only Memory ou mémoire morte effaçable

électriquement et programmable) qui peut être facilement effacée et réécrite à l'aide d'un courant électrique.

C’est dans cette mémoire que seront stockés les programmes.

 Une mémoire vive (RAM acronyme anglais pour random-access memory), « mémoire à accès aléatoire » à accès rapide dans

laquelle peuvent être enregistrées des données volatiles.

Carte Arduino Uno - Brochage

La modulation PWM (Pulse Width Modulation en anglais) ou modulation de largeur d'impulsions (MLI en français) est une

technique utilisée pour synthétiser des signaux pseudo analogiques à l'aide de circuits numériques.

Instructions pour lire le signal appliqué à une broche :

 analogRead() sur une entrée analogique (A0 à A5) (tension délivrée par un capteur par exemple) ;

 digitalRead() sur une entrée numérique (D2, D4, D7, D8, D12, D13).

Instructions pour envoyer un signal à une broche :

 analogWrite() sur une broche numérique PWM simulant un signal analogique (D3, D5, D6, D9, D10, D11) ;

 digitalWrite() sur une broche numérique.

Définir le comportement d’une broche (entrée ou sortie) : pinMode(broche, mode) avec mode = INPUT ou OUTPUT.

Broches analogiques – Analog pins

→ analogRead()

Broches numériques - Digital pins

→ digitalRead(), digitalWrite()

Symbole ~ : broche PWM (D3, D5…)

→ analogWrite()

Alimentation

(sauf si USB)

USB : alimentation et

téléversement des programmes

Bouton Reset

PC Tutoriels_Python_Arduino.docx 18/22

Carte Arduino Uno – Caractéristiques techniques

Conversion analogique - Numérique

��� !"#$%& Convertisseur analogique numérique (CAN ou ADC pour analog-to-digital-converter en anglais) n bits : une grandeur analogique

appliquée au CAN est discrétisée sur 2n valeurs (de 0 à 2n -1).

La carte Arduino UNO est équipée d’un CAN 10 bits : on dispose donc de 210 = 1024 valeurs, de 0 à 1023, pour représenter la

grandeur analogique appliquée sur une broche.

La fonction analogRead() renvoie la valeur binaire issue du CAN.

	
��
 Il faudra donc convertir la valeur binaire en fonction des caractéristiques du signal envoyé pour accéder à la valeur physique de la

grandeur mesurée.

Modulation de largeur d’impulsion (sorties PWM)

Modulation de largeur d’impulsion (schéma ci-contre) : en faisant varier le rapport cyclique

(durée du niveau haut / durée du niveau bas) des impulsions, on fait varier la valeur moyenne

du signal.

C’est cette valeur moyenne qui simule un signal analogique. Le rapport cyclique pouvant

varier rapidement, la valeur moyenne peut également évoluer au cours du temps et simuler un

signal analogique variable dans le temps.

PC Tutoriels_Python_Arduino.docx 19/22

Arduino IDE

Sélectionner le type de carte Arduino et le port sur lequel elle est connectée dans la liste déroulante « Select Board ».

Un programme Arduino est appelé « sketch » (parfois traduit par « croquis » ou « esquisse »), l’extension de fichier est .ino

Il est tapé dans la zone d’édition de l’interface, il doit être compilé (transformation du code source en fichier binaire) puis téléversé

 sur la carte.

Des informations sur le processus de compilation sont affichées dans l’onglet « Output » sous l’éditeur (éventuelles erreurs, statut final,

mémoire disponible…).

Sketchbook : programmes enregistrés sur l’ordinateur.

Board manager : packages nécessaires avec certaines cartes d’extension ajoutées sur la carte Arduino (WiFi,…).

Library manager : librairies/modules à utiliser pour les capteurs par exemple.

Serial moniter : visualisation du flux de données issu de la carte.

 Les instructions Serial.print() et Serial.println() permettent d’écrire dans le moniteur série.

Serial Plotter : visualisation de graphes.

Connexion de la carte à un ordinateur

1. Brancher la carte et lancer l’IDE.

2. Sélectionner la carte et le port dans la liste déroulante (cf. ci-contre).

En cas de non détection, essayer de changer de port et de relancer l’IDE.

3. Créer un nouveau sketch (File / New Sketch) ou ouvrir un sketch enregistré (le dernier

utilisé est préchargé).

4. Taper ou modifier le code ; l’aide en ligne est abondante.

5. Compiler le code .

Si tout se passe bien un message s’affiche en blanc (sinon lire le message affiché en

rouge et remédier aux problèmes) :

6. Téléverser le code .

7. Cliquer sur l’icône du moniteur série ou sur l’onglet « Serial Monitor » s’il est déjà ouvert.

Verify / upload Open serial monitor

Open serial plotter

Sketchbook

Board manager

Library manager

Debugger
Instructions répétées en boucle (infinie)

Instructions d’initialisation

Select board and port

Search

Serial monitor

Editeur

Moniteur série

Utile en cas d’erreur de compilation :

Ligne et colonne de l’erreur (déplacer le curseur dans l’éditeur)

PC Tutoriels_Python_Arduino.docx 20/22

 Mémento langage Arduino C++

void : en C++, le mot-clé void indique qu'une fonction ne renvoie pas de valeur (cf. autres exemples de fonctions page 11).

Les délimiteurs sont les accolades (analogue à l’indentation en python).

��� Erreur : Compilation error: expected '}' at end of input (par exemple).

Chaque instruction doit se terminer par un point-virgule (en python, uniquement pour séparer 2 instructions sur une même ligne).

��� Erreur : Compilation error: expected ';' before ….

Commentaires sur une seule ligne : // (# en python) ; multilignes /* … */ (""" … """ en python).

Noms de variables
Caractères utilisables : _, 0, 1, 2, ..., 9, A, B, ..., Z, a, b, ..., z (commence toujours par une lettre ou un tiret bas « _ »).

Types

Entiers : short (2 octets
15 15

2 2 1n
−− ≤ ≤ − , 16 bits) 215 = 32 768

unsigned short (2 octets
16

0 2 1n≤ ≤ −)

char (1 octet
7 7

2 2 1n
−− ≤ ≤ − , 8 bits) ('A' et 65 sont équivalents, codage ASCII)

byte (1 octet
8

0 2 1n≤ ≤ −)

int, unsigned int dépend du microcontrôleur (16 bits sur Arduino Uno)

long (4 octets
31 32

2 2 1n
−− ≤ ≤ − , 32 bits)

unsigned long (4 octets
32

0 2 1n≤ ≤ −)

bool ou boolean deux valeurs true ou false (sans majuscule au contraire de python)

Flottants : float (9,4039548.10-38 à 3,4028235.10+38, 32 bits) Ex : 1.5e-2

Chaînes : https://docs.arduino.cc/language-reference/en/variables/data-types/string/

Affectation
Comme en python, le symbole d’affectation est le signe égal : « = ».

Déclaration des variables et types

Dans le langage C le type et les variables doivent être déclarés.

��� Erreur : ‘nom_variable’ was not declared in this scope.

int i; // Déclaration sans affectation (l’affectation aura lieu plus loin dans le programme)
float pi = 3.14; // Déclaration et affectation simultanées
char c = 'a';

Opérateurs

+, -, *, /, % (reste division entière)

== (test d'égalité), != (test de différence), <, >, <=, >= (tests de comparaison)

! (négation),|| (ou), && (et)

Raccourcis

i=i+1; ⇔ i++; i=i-1; ⇔ i--;

a=a+b; ⇔ a+=b; a=a-b; ⇔ a-=b;

1

2

3

4

5

6

7

8

9

10

11

12

// Commentaire sur une ligne

void setup() {
// Initialisation : instructions exécutées une seule fois
Instruction1;
Instruction2;
}

void loop() {
// Instructions répétées en boucle infinie
Instruction3;
}

PC Tutoriels_Python_Arduino.docx 21/22

Instruction conditionnelle

if (conditions) {instructions}
else if (conditions) {instructions} (instruction else if facultative, peut être répétée)

else (conditions) {instructions} (instruction else facultative)

Rq : il existe une instruction conditionnelle multiple switch…case

Boucles
while (conditions) {instructions}
for (i=0;i<100;i=i+1) {instructions} (par exemple)

Rq : il existe une boucle do…while

Tableaux

La taille des tableaux doit être une constante.

type nom_tableau[dimension]
Exemples :

int liste[10];
float L[3] = {1.1, 2.2, 3.3};

Accès via l’indice/index (la numérotation commence à 0 comme en python) : nom_tableau[indice]

Directives de compilation

Une directive de compilation indique au compilateur de procéder à des opérations préalables au début de la compilation.

Ces directives se situent en tout début du programme source.

#include <fichier> // Inclure des librairies (analogue à import en python)

#include "fichier.h" // Autre syntaxe

#define alias valeur // Remplace alias par valeur

Exemple : #define capteur1 A0 analogue à const int capteur1 = A0 mais gain de mémoire avec define.

Const

Ce mot clé permet de définir une variable qui, une fois initialisée, ne pourra plus être modifiée.

Exemple :
Const float pi = 3.1415 ;
x = 2 * pi ;

Aide en ligne https://docs.arduino.cc/language-reference/

Fonctions https://docs.arduino.cc/language-reference/#functions

Variables https://docs.arduino.cc/language-reference/#variables

Structure https://docs.arduino.cc/language-reference/#structure

Transfert des données - Annexes techniques

Port série – Cf. « Découvrir en expérimentant » et tutoriels détaillés.

Un port série, également appelé port COM, est un type d'interface informatique qui permet la communication entre un ordinateur

et des périphériques externes. Il s'agit d'un port physique sur un ordinateur ou un appareil qui permet d'envoyer et de recevoir des

données bit par bit et séquentiellement sur un seul fil.

Ouverture et écriture dans le port série

Serial.begin(v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. exemple 1).

Serial.print(s) Ecrire la chaîne s sur la ligne courante (à la suite de la dernière chaîne écrite si elle existe) ou sur

une nouvelle ligne sinon sans retour à la ligne.

Serial.println(s) Ecrire la chaîne s sur la ligne courante (à la suite de la dernière chaîne écrite si elle existe) ou sur

une nouvelle ligne sinon puis retour à la ligne.

Time

Il est parfois nécessaire d’indiquer au microcontrôleur un délai d’attente (entre une mesure et son traitement par exemple).

delay(n) Attendre n ms (millisecondes).

millis() Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

Fichiers et caractères de codage « invisibles » – « Découvrir en expérimentant » et tutoriels détaillés.

Les fichiers comportent des caractères « invisibles » (on peut les visualiser dans un éditeur de texte tel que Notepad++).

Il s’agit par exemple des caractères qui provoquent un retour à la ligne, en python : \n (système Linux), \r\n (Windows), \r (Mac).

La bibliothèque python serial (https://pyserial.readthedocs.io/) permet de lire les lignes écrites dans le port série :

ligne = serial.Serial(port_serie, vitesse). readline() (lecture et stockage du résultat dans une variable nommée ligne).

Les données lues dans le port série sont au format binaire, ligne.decode("utf-8") permet de décoder ce format.

	
��
 Ces informations sont utiles lorsqu’il s’agit de sauvegarder des données lues sur le port série dans un fichier texte.

PC Tutoriels_Python_Arduino.docx 22/22

