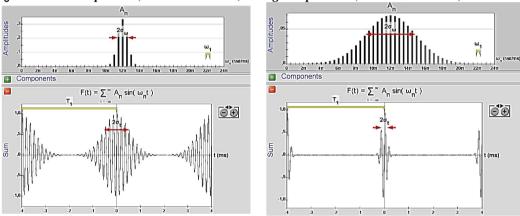


Signaux échantillonnés Conversion analogique numérique

Matériel et logiciels :

GBF 2 voies - Oscilloscope – Logiciel Latis Pro + carte d'acquisition Sysam SP5. Multiplieur - CAN (convertisseur analogique digital) - Haut-parleur.

Consignes:


Utiliser le zoom et le réticule pour faire les mesures dans Latis Pro.

Régler la sensibilité des voies sur latispro (clic droit sur la voie utilisée).

Observer systématiquement les signaux à l'oscilloscope.

1ère partie – Analyse de Fourier

 \bigcirc Extension temporelle (notée $2\sigma_i$ ci-dessous) et largeur spectrale (notée $2\sigma_\omega$ ci-dessous)

Plus le signal est bref dans le temps, plus le spectre est riche.

Extension temporelle et largeur spectrale d'un signal

Notations:

 $\boldsymbol{\tau}$ ou Δt ou $2\sigma_t$: durée pendant laquelle le signal s(t) prend des valeurs notables ; $\Delta \omega$ ou $2\sigma_\omega$: largeur spectrale en pulsation (en fréquence : Δf ou $2\sigma_f$).

Relations fondamentales de Fourier: $\tau \Delta \omega \approx 1$ ou $\tau \Delta f = \text{cte} \left(\approx \frac{1}{2\pi}\right)$

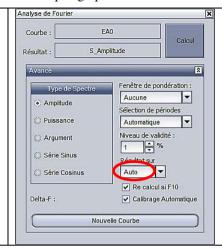
- Plus un signal s(t) est **bref**, plus son **spectre** est **riche** (étendu en fréquence). Un signal de *durée limitée* τ n'est pas représentable par un signal de pulsation unique ω_0 ($\Delta \omega = 1/\tau \neq 0$). Seul un signal éternel ($\tau \to \infty$) est monochromatique $\omega = \omega_0$ ($\Delta \omega = 0$).
- Plus le signal s(t) varie *brutalement*, plus les *harmoniques élevés* jouent un rôle important. En effet, plus un signal s(t) diffère d'une sinusoïde plus les harmoniques permettant de le constituer sont nombreux.

Analyse de Fourier – Exemples de spectres 15' max

Réglages communs pour les acquisitions de ce paragraphe

Acquisition (sortie GBF) : touche **F10** du clavier 1 voie (GBF) 4000 points $T_e = 1 \mu s$ durée = 4 ms

Analyse de Fourier : touche **F6** du clavier Ci-contre


GBF:

Signal: voir ci-dessous

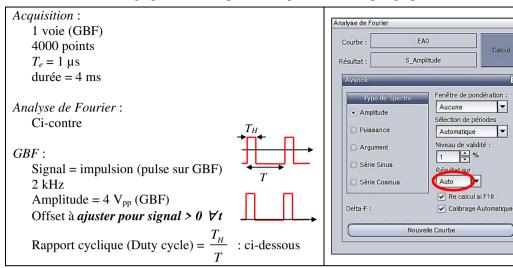
2 kHz

Amplitude = $2 \text{ V} (4 \text{ V}_{pp} \text{ sur GBF})$

Offset: voir ci-dessous

Dans chaque cas ci-dessous, effectuer les copies d'écran et rédiger le compte-rendu (consigner observations, remarques et interprétations, vérifications quantitatives...).

Réaliser l'acquisition du signal du GBF et l'analyse de Fourier dans les cas suivants :

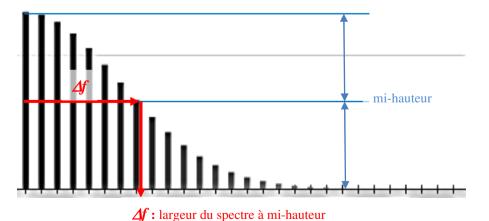

- 1. Signal sinusoïdal, offset = 0 V. Vérifier la fréquence du pic (utiliser le réticule).
- 2. Signal sinusoïdal, offset = 1,5 V. Quelle différence avec le précédent spectre ?
- 3. Signal carré, offset = 0 V. Fréquences et amplitudes des harmoniques ?

Rappel - Décomposition en série de Fourier d'un signal carré de fréquence f :

$$s_{carre}(t) = \frac{4}{\pi} A \left[\sin(2\pi ft) + \frac{1}{3} \sin(2\pi 3 ft) + \frac{1}{5} \sin(2\pi 5 ft) + \frac{1}{7} \sin(2\pi 7 ft) + \dots \right]$$

harmoniques *nf* impairs d'amplitude relative *1/n* par rapport au fondamental.

Réglages communs pour les acquisitions de ce paragraphe


Réaliser l'acquisition du signal et l'analyse de Fourier dans les cas suivants :

- 4. Impulsion avec rapport cyclique 10%.
- 5. Impulsion avec rapport cyclique 5%.
- 6. Impulsion avec rapport cyclique 1%.

Commenter l'évolution des spectres.

Estimer numériquement dans les 3 cas le produit $\Delta t \Delta f$ (utiliser zoom et réticule). Pour estimer la largeur spectrale Δf , prendre la largeur du spectre à mi-hauteur :

Compléter le compte-rendu.

2ème partie – Conversion analogique-numérique

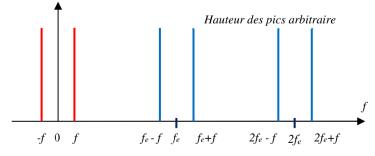
Principe de la conversion analogique-numérique Lire et retenir

Un signal *analogique* est un signal *continu* qui peut prendre *une infinité de valeurs*, il n'est donc pas possible de le stocker informatiquement. Afin de le *stocker* et de le *traiter*, on utilise un *convertisseur analogique-numérique* (*CAN*). Le signal obtenu est un signal *numérique* qui est un signal **discret** (**discontinu**), qui se résume en une succession de « 0 » et de « 1 ».

Pour fixer les idées, raisonnons sur un signal sinusoïdal d'amplitude 10 V et de période 5 ms.

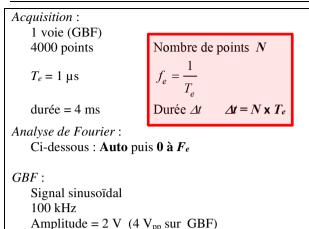
Le CAN réalise une double quantification ou échantillonnage :

- une discrétisation des valeurs de l'amplitude sur un certain nombre de bits (un CAN sur 8 bits permet d'obtenir 2⁸ = 256 valeurs différentes pour décrire toutes les valeurs de -10 V à +10 V soit un pas de 20/256 = 78 mV);
- une discrétisation des valeurs du temps via l'horloge du processeur. (un CAN à $f_e = 20 \text{ kHz}$ aura donc une période d'échantillonnage $T_e = 0.05 \text{ ms}$ soit 5/0.05 = 100 échantillons de temps pour décrire la sinusoïde considérée).
- E Les deux caractéristiques essentielles d'un CAN sont donc :
- son *nombre n de bits* qui conditionne la *résolution en tension* : $pas = \frac{|\Delta V|_{\text{max}}}{2^n}$;
- sa fréquence d'échantillonnage f_e qui conditionne la résolution en temps : $pas = T_e$.


El Le théorème de Shannon permet de connaître la *fréquence d'échantillonnage* à choisir pour un signal donné.

Pour reconstruire un signal de sortie de manière fidèle au signal d'entrée, il faut choisir une fréquence d'échantillonnage au moins deux fois supérieure à la fréquence maximale contenue dans le signal d'entrée :

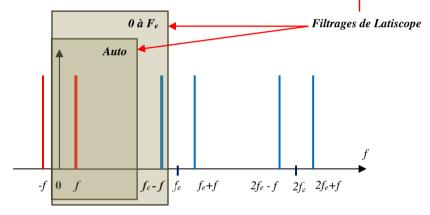
 $f_e > 2 f_{\text{max}}$ (critère de Shannon)


où f_{max} est la plus grande fréquence d'amplitude notable dans le spectre.

En réalité, même dans le cas d'un échantillonnage temporel correct $(f_e > 2f_{\text{max}})$ d'une simple *sinusoïde* il existe de nombreux pics supplémentaires dans le spectre. Ce sont des *artéfacts* introduits par le *traitement numérique*.

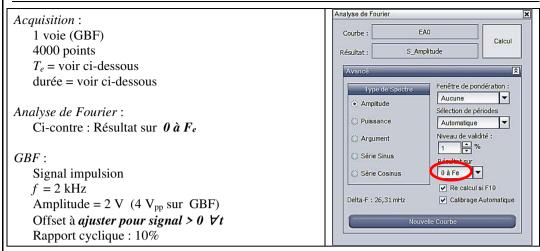
L'opération d'échantillonnage d'une sinusoïde fait apparaître les fréquences $\left(nf_e \pm f\right)$ en plus de sa fréquence de base f.

Échantillonnage correct : pics supplémentaires dans le spectre 5' max



Réaliser l'acquisition du signal et l'analyse de Fourier dans le cas suivant :

- 7. Signal sinusoïdal (Résultat sur *Auto* dans la boîte de dialogue ci-dessus).
- 8. Signal sinusoïdal (Résultat sur $\theta \grave{a} F_e$).


Offset = 0 V

En mode « Auto », le logiciel Latispro effectue un filtrage passe-bas de façon à éliminer les artéfacts. En mode « 0 à F_e », il permet de visualiser le premier pic supplémentaire.

Observer les spectres : visualiser le pic supplémentaire. Compléter le compte-rendu (inutile de faire des copies d'écran).

Critère de Shannon - Repliement spectral

Réaliser l'acquisition du signal et l'analyse de Fourier dans les cas suivants :

- 9. $T_e = 1 \,\mu s$ (durée = 4 ms), $f_e = ?$ Critère de Shannon respecté ?
- 10. $T_e = 5 \,\mu \text{s}$ (durée = 20 ms), $f_e = ?$ Critère de Shannon respecté ?
- 11. $T_e = 10 \,\mu s$ (durée = 40 ms), $f_e = ?$ Critère de Shannon respecté ?

Observer les spectres et commenter. Compléter le compte-rendu.

Montage simulant l'échantillonnage temporel

Montage page suivante.

```
Acquisition:
     1 voie (sortie multiplieur)
     4000 points
                                                                                  Analyse de Fourier
     T_e = 10 \text{us}
                                                                                                       EA0
                                                                                    Courbe
     dur\acute{e}e = 40 \text{ ms}
                                                                                                    S Amplitude
Analyse de Fourier:
     Auto
                                                                                                            Fenêtre de pondération :
                                                                                                            Aucune
                                                                                                            Sélection de périodes
GBF: voie 1 (tension u_1)
                                                                                                            Automatique
     Signal sinusoïdal
                                                                                                            Niveau de validité :
                                                                                      C Argument
    f_1 = 100 \text{ Hz}
     Amplitude = 4 \text{ V} (8 \text{ V}_{pp} \text{ sur GBF})
     Offset = 0 \text{ V}
                                                                                      C Série Cosinus
                                                                                                            Re calcul si F10
GBF: voie 2 (tension u_2)
                                                                                     Delta-F:
                                                                                                            ✓ Calibrage Automatique
     Signal impulsion
                                                                                                    Nouvelle Courbe
    f_{e2} = 2 \text{ kHz}
     Amplitude = 1 V_{pp} sur GBF
     Offset \approx 0.5 \text{ V} à ajuster pour signal > 0 \forall t
     Rapport cyclique: 10%
```

Les 2 voies du GBF sont envoyées sur les 2 entrées du multiplieur (*préalablement alimenté en +15 V/-15 V*, cf. document sur le multiplieur).

Observer la voie 1 et la sortie du multiplieur à l'oscilloscope.

Relier la sortie du multiplieur à la carte d'acquisition.

Comprendre

Ce montage simule donc un échantillonnage temporel en multipliant le signal à numériser (la sinusoïde à 100 Hz) par des impulsions de courte durée (signal nul sauf pendant de courts laps de temps). Le signal final est lui-même numérisé par l'interface Sysam SP5 à une fréquence très supérieure ($f_e = I/T_e = 100 \text{ kHz}$) en mode « Auto » : l'interface ne modifie donc pas le spectre (i.e. les phénomènes observés ne sont dus qu'à l'échantillonnage simulé).

12. Réaliser l'acquisition des signaux et l'analyse de Fourier.

Observer les spectres et commenter.

En zoomant sur quelques pics du spectre du signal de sortie, prouver l'existence de la sinusoïde à 100 Hz (cf. page 2).

Compléter le compte-rendu.

Critère de Shannon - Illustration sonore

- 13. Rappeler la bande passante de l'oreille.
- 14. Brancher le haut-parleur sur le GBF réglé en signal sinusoïdal à 20 kHz avec une amplitude notable (sans offset). Commenter.
- 15. Acquérir ce signal sur EA₀ (100 points pendant 4,9 ms : T_e = 49 μ s).
- 16. Brancher le haut-parleur sur la sortie de la carte d'acquisition (bornes SA₁ et masse ci-dessous).

Activer cette sortie (ci-contre à droite)

Écouter et interpréter.

17. Réaliser une acquisition correcte de ce signal (vérifier grâce à une analyse spectrale).

Utilisation d'un CAN

Échantillonnage en tension sur n bits

Entrer un signal sinusoïdal d'amplitude 4 V (8 V_{PP}) à 100 Hz sur les 2 bornes visibles ci-contre.

Observer à l'oscilloscope le signal du GBF et le signal délivré par les 2 bornes du bas à droite.

18. Agir sur le bouton poussoir « Q » :

Compléter le compte-rendu.

Échantillonnage temporel à différentes fréquences f_e

Entrer un signal sinusoïdal d'amplitude 4 V (8 V_{PP}) à 600 Hz sur les 2 bornes du CNA. Réglages Latispro : 5000 points, $T_e = 1 \mu s$ pour une durée de 5 ms.

a/ Numériser et mémoriser le signal en appuyant sur le bouton

(Terminé lorsque le clignotement cesse)

b/ Émettre le signal mémorisé en appuyant sur le bouton

Déclencher aussitôt l'acquisition dans Latispro.

19. Faire varier f_e et compléter le compte-rendu.

