
PC Python_port_serie.docx 1/4

 Python – Acquisition de données via le port série

Port série

Un port série, également appelé port COM, est un type d'interface informatique qui permet la communication entre un ordinateur

et des périphériques externes.

Il s'agit d'un port physique sur un ordinateur ou un appareil qui permet d'envoyer et de recevoir des données bit par bit

séquentiellement sur un seul fil.

Objectif
�� : lire un flux de données sur le port série.

En pratique
���� : les données sont générées par Arduino.

Prérequis
�	
� : installation de la bibliothèque pyserial

En cas d’erreur ModuleNotFoundError: No module named 'serial' provoquée par l’instruction import serial, installer la bibliothèque

pyserial (dans la console de Pyzo ou de Spyder, entrer : pip install pyserial).

Principe

1. Charger le module serial.

2. Définir le port série (ou le détecter automatiquement), définir la vitesse de transmission et ouvrir le port.

3. Initialiser une variable de sortie de boucle.

4. Répéter en boucle :

a. lire une ligne de données (les données sont au format binaire) ;

b. traiter la ligne (suppression des caractères « invisibles » et convertir au format texte) ;

c. stocker la ligne traitée dans une variable ou un fichier (ou simplement l’afficher en phase de test) ;

d. si nécessaire incrémenter la variable de sortie de boucle ;

e. tester la condition de sortie de boucle et sortir le cas échéant.

5. Fermer le port série.

L’ordre des étapes dépend de la condition de sortie de boucle utilisée.

��� Ci-contre, exemple de données envoyées par Arduino via le port série, lues ligne par ligne et

affichées dans le shell python ou le moniteur série Arduino (avec émission de la chaîne 'Stop'

pour signaler la fin de la transmission de données).

��� L'onglet "Serial Monitor" de l’IDE Arduino doit rester fermé pour que python puisse

ouvrir le port série.

Sous peine d’erreur python :

1;1;178

2;1;182

3;1;190

…

49;10;200

50;10;200

Stop

serial.serialutil.SerialException: could not open port 'COM3': PermissionError(13, 'Accès refusé.', None, 5)

����� En réalité une ligne lue dans le port série contient des caractères invisibles, par exemple :

 les sauts de lignes codés par '\n' en python ;

 les tabulations (sauts de colonnes, touche tab du clavier) codés par '\t' en python.

�	
� Ces caractères sont « invisibles » dans un éditeur de texte mais pas dans le codage des fichiers, ils doivent être supprimés.

La méthode strip() permet de supprimer les sauts de lignes.

��� Exemple de ligne lue dans le port série :

s = '4.51;0.7\n' → présence d’un saut de ligne '\n'

s.strip() → suppression

Renvoie la chaîne : '4.51;0.7'

�	
� Chaque ligne lue est une chaîne de caractères qui contient des données séparées par un caractère particulier appelé séparateur de

colonnes (point-virgule, virgule, tabulation… ce caractère est défini par le périphérique émetteur, cf. sketch Arduino).

La découpe d'une ligne (i.e. de la chaîne associée) en "colonnes" est effectuée par la méthode split() qui renvoie une liste

contenant autant de chaînes qu'il y a de colonnes dans le fichier (i.e. de valeurs sur une ligne).

��� Exemple de ligne lue dans le port série :

s = '4.51;0.7' → deux valeurs séparées par un point-virgule

s.split(';') → « découpage » de la chaîne s sur le critère « point-virgule »

Renvoie la liste de chaînes (obtenue par « découpage » de la chaîne s sur le critère « point-virgule ») : ['4.51', '0.7']

����� L’objectif après lecture et traitement est de reconstituer un tableau de mesures (tableau numpy de flottants).

PC Python_port_serie.docx 2/4

Code minimal - Test du port série et visualisation des données dans le shell python

Le programme suivant :

- charge le module serial (ligne 1) ;

- crée une variable pour le nom du port série nommé 'COM3' (ligne 4) ;

- crée une variable pour la vitesse de transmission à 115200 bauds (ligne 5) ;

- ouvre le port (un objet possédant des propriétés et des méthodes est créé et stocké dans la variable port) (ligne 7) ;

- (il manque les initialisations éventuelles pour la condition de sortie ligne 10 : code à ajouter) ;

- répète en boucle (ligne 13) :

• lire une ligne grâce à la méthode readline() de l’objet port (ligne 14) ;

• supprimer les caractères invisibles (retour à la ligne…) grâce à la méthode strip() (ligne 15) ;

• convertir la ligne binaire en chaîne au format utf-8 grâce la méthode decode() (ligne 16) ;

• tester la condition de sortie de boucle (ligne 17, code à ajouter) et sortir le cas échéant grâce à l’instruction break

(ligne 18) ;

• afficher la ligne dans le shell (ou la stocker dans une variable ou un fichier) (ligne 19) ;

• (incrémenter éventuellement la variable utilisée pour la condition de sortie de la boucle (ligne 20, code à ajouter))

- ferme le port (ligne 22)
��� Ne pas oublier cette instruction.

��� La vitesse de transmission du périphérique doit être la même que la vitesse de transmission définie dans python.

�	
� Code minimal pour le test de la communication série

Documentation : https://pyserial.readthedocs.io/en/latest/shortintro.html#opening-serial-ports

�	
� Sortie de boucle : en pratique, il vaut mieux interrompre la boucle (sinon le port série reste ouvert ce qui empêche son utilisation

par d’autres périphériques).

Exemples de sortie de boucles

Sortie après un nombre prédéfini de lignes lues :

Sortie sur un mot-clé (ce mot-clé doit être émis par le périphérique à un moment donné, cf. sketch Arduino) :

 Dans la suite, on envisage la détection automatique des ports ainsi que le traitement des données et leur stockage.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

import serial

Communication : port utilisé et vitesse de transmission

port_serie = 'COM3' # Nom du port série, cf. Arduino IDE (port sélectionné)

bauds = 115200 # Vitesse de transmission, cf. sketch : Serial.begin(bauds)

port = serial.Serial(port_serie, bauds) # Ouverture du port série

Sortie de boucle

... # [Sortie de boucle - Code éventuel à ajouter]

Boucle "infinie"

while True:

 ligne = port.readline() # Lecture d'une ligne sur le port série

 ligne = ligne.strip() # Suppression caractères invisibles

 ligne = ligne.decode("utf-8") # readline -> binaire, conversion

 if ... # Condition de sortie de boucle - Code à ajouter

 break # Sortie de la boucle while

 print(ligne) # Vérification visuelle dans le shell

 ... # [Sortie de boucle – Code éventuel à ajouter]

port.close() # Fermeture du port série

9

17

18

19

20

nbre_lignes, max_lignes = 1, 100

...

 if nbre_lignes > max_lignes:

 break

 nbre_lignes += 1

9

17

18

19

20

Mot_cle = ’Stop’

...

 if 'Stop' in ligne:
 break

 # Aucune instruction nécessaire

PC Python_port_serie.docx 3/4

Détection automatique du port série (utile mais non indispensable)

La fonction portArduino(bauds) (code ci-dessous) permet de détecter automatiquement les ports série disponibles, de trouver le

port auquel est connecté la carte Arduino et de l’ouvrir (le paramètre bauds permet de définir la vitesse de transmission pour ce

port).

Exemple d’affichage à l’exécution de la fonction portArduino(bauds) avec le paramètre bauds valant 115200 :
Liste des ports détectés

Lien série sur Bluetooth standard (COM9)

Lien série sur Bluetooth standard (COM8)

Arduino Uno (COM5)

Nom du port : COM5

Port ouvert : True

Transmission : 115200

�	
� Code pour détection automatique des ports

����� Ligne 9 : CDC signifie Communications Device Class (il s’agit d’un protocole de communication utilisé en particulier avec les

microcontrôleurs de type Arduino).
Ligne 18 : cette ligne est équivalente aux lignes 4,5,7 du code minimal de la page précédente.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

import serial

import serial.tools.list_ports # Outils pour lister les ports série

def portArduino(bauds): # Fonction utilitaire pour déterminer le port série

 ports = list(serial.tools.list_ports.comports()) # Liste d’objets

 print('Liste des ports détectés')

 for p in ports: # Parcours des objets

 print(p.description) # Affichage d’informations avec méthodes associées

 if "CDC" in p.description or "Arduino" in p.description:

 port = serial.Serial(p.device, bauds) # Ouverture du port

 print('\nNom du port : ',port.name)

 print('Port ouvert : ',port.is_open)

 print('Transmission : ', port.baudrate)

 return port

bauds = 115200

port = portArduino(bauds) # Récupération et ouverture du port série

PC Python_port_serie.docx 4/4

Traitement des données – Stockage des données dans une liste puis un tableau numpy

����� Le code ci-dessous convent aux acquisitions rapides (i.e. avec un nombre raisonnable de valeurs) car les données sont

stockées dans une liste puis dans un tableau (
��� structures volatiles).

Pour les acquisitions longues ou lorsque les données doivent être conservées (plus prudent dans tous les cas afin d’éviter les

pertes en cas de « plantage »), il faut enregistrer les données dans un fichier, cf. document « Python – Fichiers texte ».

Rq : la bibliothèque panda permet de traiter de très gros volumes de données.

Ce code est très semblable au code minimal de la page 2 (avec détection automatique des ports et arrêt de la boucle grâce à un mot-

clé) : seuls les éléments nouveaux concernant le stockage et le traitement sont commentés ci-dessous.

�	
� Code complet

����� Stockage des lignes lues dans le port série – Lignes 20 et 29

On stocke les lignes (décodées au format chaîne) dans une liste (liste mesures créée à la ligne 20, remplie à la ligne 29).

����� Extraction, traitement et stockage des données sous forme de nombres – Lignes 34 à 40

 Ligne 34 - Définition du séparateur de colonnes (dépend du séparateur utilisé dans le sketch Arduino).

 Ligne 36 - Initialisation d’une liste vide data.

 Ligne 37 - Parcours des chaînes de la liste mesures pour extraire les valeurs des colonnes.

• Ligne 38 - L’instruction s.split(separateurColonnes) renvoie une liste de chaînes stockée dans L.

• Ligne 39 – Ajout de la liste L à la liste data.

 Ligne 41 – Conversion de la liste data en tableau numpy.

����� La conversion en tableau numpy permet d’effectuer des traitements mathématiques sur les colonnes du tableau obtenu.

Exemple : x = np.sin(dataN[:,0])*3 permet de définir un nouveau tableau de valeurs à partir de la colonne d’index 0.

Il est ensuite possible de tracer des courbes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

import serial

import serial.tools.list_ports

def portArduino(bauds):

 ports = list(serial.tools.list_ports.comports())

 print('Liste des ports détectés')

 for p in ports :

 print(p.description)

 if "CDC" in p.description or "Arduino" in p.description:

 port = serial.Serial(p.device, bauds)

 print('\nNom du port : ',port.name)

 print('Port ouvert : ',port.is_open)

 print('Transmission : ', port.baudrate)

 return port

bauds = 115200

port = portArduino(bauds)

Stockage des lignes lues dans le port série dans une liste

mesures = [] # Liste de chaînes (cf. ci-dessous)

while True:

 ligne = port.readline()

 ligne = ligne.strip()

 ligne = ligne.decode("utf-8")

 if 'Stop' in ligne: # Message d’arrêt défini dans sketch Arduino

 break

 print(ligne)

 mesures.append(ligne) # Rappel : ligne est de type string

port.close()

Traitement des mesures : liste de chaînes -> tableau de nombres

mesures = liste chaînes -> data = liste de listes de flottants

separateurColonnes = ';' # Cf. sketch Arduino (';' ou '\t' = tabulation...)

data = [] # Liste de listes de chaînes (cf. ci-dessous)

for s in mesures:

 L = s.split(separateurColonnes) # ligne = str -> liste de str = colonnes

 data.append(L)

data -> dataN = tableau numpy bidimensionnel et conversion des colonnes en float

dataN = np.array(data, dtype=float)

