Python — Acquisition de données via le port série o

Port série

Un port série, également appelé port COM, est un type d'interface informatique qui permet la communication entre un ordinateur
et des périphériques externes.

Il s'agit d'un port physique sur un ordinateur ou un appareil qui permet d'envoyer et de recevoir des données bit par bit
séquentiellement sur un seul fil.

Objectif & : lire un flux de données sur le port série.

En

pratique 8% : les données sont générées par Arduino.

Prérequis M : installation de la bibliotheque pyserial

En cas d’erreur ModuleNotFoundError: No module named 'serial' provoquée par I’instruction import serial, installer la bibliotheque
pyserial (dans la console de Pyzo ou de Spyder, entrer : pip install pyserial).

Principe
1. Charger le module serial.
2. Définir le port série (ou le détecter automatiquement), définir la vitesse de transmission et ouvrir le port.
3. Initialiser une variable de sortie de boucle.
4. Répéter en boucle :

®

A

lire une ligne de données (les données sont au format binaire) ;
traiter la ligne (suppression des caracteres « invisibles » et convertir au format texte) ;
stocker la ligne traitée dans une variable ou un fichier (ou simplement I’afficher en phase de test) ;
si nécessaire incrémenter la variable de sortie de boucle ;
e. tester la condition de sortie de boucle et sortir le cas échéant.
5. Fermer le port série.

ao o

L’ordre des étapes dépend de la condition de sortie de boucle utilisée.

Ci-contre, exemple de données envoyées par Arduino via le port série, lues ligne par ligne et ;; 1; 12523
affichées dans le shell python ou le moniteur série Arduino (avec émission de la chalne 'Stop' o

pour signaler la fin de la transmission de données). 3' 17190
L'onglet ''Serial Monitor'' de ’'IDE Arduino doit rester fermé pour que python puisse 49;10;200
ouvrir le port série. 50;10;200
Sous peine d’erreur python : Stop

serial.serialutil.SerialException: could not open port 'COM3': PermissionError(13, 'Accés refusé.', None, 5)

En réalité une ligne lue dans le port série contient des caracteres invisibles, par exemple :
» les sauts de lignes codés par '\n"' en python ;
» les tabulations (sauts de colonnes, touche tab du clavier) codés par '\t ' en python.

Ces caracteres sont « invisibles » dans un éditeur de texte mais pas dans le codage des fichiers, ils doivent étre supprimés.
La méthode strip () permet de supprimer les sauts de lignes.

® Exemple de ligne lue dans le port série :

s = '4.51;0.7\n" — présence d’un saut de ligne '\n"'

s.strip() — suppression

Renvoie la chaine : '4.51;0.7"'

Chaque ligne lue est une chaine de caractéres qui contient des données séparées par un caractere particulier appelé séparateur de
colonnes (point-virgule, virgule, tabulation... ce caractere est défini par le périphérique émetteur, cf. sketch Arduino).

La découpe d'une ligne (i.e. de la chaine associée) en "colonnes" est effectuée par la méthode split () qui renvoie une liste
contenant autant de chaines qu'il y a de colonnes dans le fichier (i.e. de valeurs sur une ligne).

® Exemple de ligne lue dans le port série :

s = '4.51;0.7" — deux valeurs séparées par un point-virgule
s.split('; ") — « découpage » de la chaine s sur le critere « point-virgule »
Renvoie la liste de chaines (obtenue par « découpage » de la chaine s sur le critere « point-virgule ») : ['4.51', '0.7']

L’objectif apres lecture et traitement est de reconstituer un tableau de mesures (tableau numpy de flottants).

PC

Python_port_serie.docx 1/4

Code minimal - Test du port série et visualisation des données dans le shell python

Le programme suivant :
- charge le module serial (ligne 1) ;
- crée une variable pour le nom du port série nommé 'coM3"' (ligne 4) ;
- crée une variable pour la vitesse de transmission a 115200 bauds (ligne 5) ;
- ouvre le port (un objet possédant des propriétés et des méthodes est créé et stocké dans la variable port) (ligne 7) ;
- (il manque les initialisations éventuelles pour la condition de sortie ligne 10 : code a ajouter) ;
- répete en boucle (ligne 13) :
* lire une ligne griace a la méthode readline () de I’objet port (ligne 14) ;
* supprimer les caracteres invisibles (retour a la ligne...) grace a la méthode strip () (ligne 15) ;
» convertir la ligne binaire en chaine au format utf-8 grace la méthode decode () (ligne 16) ;
» tester la condition de sortie de boucle (ligne 17, code a ajouter) et sortir le cas échéant grace a I’instruction break
(ligne 18) ;
» afficher la ligne dans le shell (ou la stocker dans une variable ou un fichier) (ligne 19) ;
* (incrémenter éventuellement la variable utilisée pour la condition de sortie de la boucle (ligne 20, code a ajouter))
- ferme le port (ligne 22) A Ne pas oublier cette instruction.

/\ La vitesse de transmission du périphérique doit étre la méme que la vitesse de transmission définie dans python.

/W, Code minimal pour le test de la communication série

1 | import serial

2

3 | # Communication : port utilisé et vitesse de transmission

4 | port_serie = '"COM3' # Nom du port série, cf. Arduino IDE (port sélectionné)

5 | bauds = 115200 # Vitesse de transmission, cf. sketch : Serial.begin (bauds)
6

7 | port = serial.Serial (port_serie, bauds) # Ouverture du port série

8

9 | # Sortie de boucle
10 | ... # [Sortie de boucle - Code éventuel a ajouter]
11

12 | # Boucle "infinie"
13 | while True:

14 ligne = port.readline () # Lecture d'une ligne sur le port série

15 ligne = ligne.strip() # Suppression caractéres invisibles

16 ligne = ligne.decode ("utf-8") # readline —-> binaire, conversion

17 if ... # Condition de sortie de boucle - Code a ajouter
18 break # Sortie de la boucle while

19 print (ligne) # Vérification visuelle dans le shell

20 # [Sortie de boucle - Code éventuel a ajouter]
21

22 | port.close() # Fermeture du port série

Documentation : https://pyserial.readthedocs.io/en/latest/shortintro.html#opening-serial-ports

/=, Sortie de boucle : en pratique, il vaut mieux interrompre la boucle (sinon le port série reste ouvert ce qui empéche son utilisation
par d’autres périphériques).

Exemples de sortie de boucles
Sortie apres un nombre prédéfini de lignes lues :

9 | nbre_lignes, max_lignes = 1, 100
17 if nbre_lignes > max_lignes:
18 break
19
20 nbre_lignes += 1

Sortie sur un mot-clé (ce mot-clé doit étre émis par le périphérique a un moment donné, cf. sketch Arduino) :
9 | Mot_cle = ’Stop’

17 if 'Stop' in ligne:

18 break
19
20 # Aucune instruction nécessaire

% Dans la suite, on envisage la détection automatique des ports ainsi que le traitement des données et leur stockage.

PC Python_port_serie.docx 2/4

Détection automatique du port série (utile mais non indispensable)

La fonction portArduino (bauds) (code ci-dessous) permet de détecter automatiquement les ports série disponibles, de trouver le
port auquel est connecté la carte Arduino et de 1’ouvrir (le parametre bauds permet de définir la vitesse de transmission pour ce

port).

Exemple d’affichage a 1’exécution de la fonction portArduino (bauds) avec le parametre bauds valant 115200 :
Liste des ports détectés
Lien série sur Bluetooth standard (COM9)
Lien série sur Bluetooth standard (COMS8)
Arduino Uno (COM5)

Nom du port : COMS

Port ouvert : True
Transmission : 115200

W Code pour détection automatique des ports

1 | import serial

2 | import serial.tools.list_ports # Outils pour lister les ports série

3

4 | def portArduino (bauds) : # Fonction utilitaire pour déterminer le port série
5 ports = list (serial.tools.list_ports.comports()) # Liste d’objets

6 print ('Liste des ports détectés')

7 for p in ports: # Parcours des obijets

8 print (p.description) # Affichage d’informations avec méthodes associées
9 if "CDC" in p.description or "Arduino" in p.description:

10 port = serial.Serial(p.device, bauds) # Ouverture du port
11

12 print ('\nNom du port : ', port.name)
13 print ('Port ouvert : ',port.is_open)

14 print ('Transmission : ', port.baudrate)
15 return port

16
17 | bauds = 115200

18 | port = portArduino (bauds) # Récupération et ouverture du port série

Q Ligne 9 : CDC signifie Communications Device Class (il s’agit d’un protocole de communication utilisé en particulier avec les

microcontrdleurs de type Arduino).
Ligne 18 : cette ligne est équivalente aux lignes 4,5,7 du code minimal de la page précédente.

PC Python_port_serie.docx

3/4

Traitement des données — Stockage des données dans une liste puis un tableau numpy

Q Le code ci-dessous convent aux acquisitions rapides (i.e. avec un nombre raisonnable de valeurs) car les données sont
stockées dans une liste puis dans un tableau (/\ structures volatiles).
Pour les acquisitions longues ou lorsque les données doivent étre conservées (plus prudent dans tous les cas afin d’éviter les
pertes en cas de « plantage »), il faut enregistrer les données dans un fichier, cf. document « Python — Fichiers texte ».
Rq : 1a bibliotheque panda permet de traiter de trés gros volumes de données.

Ce code est tres semblable au code minimal de la page 2 (avec détection automatique des ports et arrét de la boucle grace a un mot-
clé) : seuls les éléments nouveaux concernant le stockage et le traitement sont commentés ci-dessous.

M Code complet

1 | import serial
2 | import serial.tools.list_ports
3
4 | def portArduino (bauds) :
5 ports = list (serial.tools.list_ports.comports())
6 print ('Liste des ports détectés')
7 for p in ports
8 print (p.description)
9 if "CDC" in p.description or "Arduino" in p.description:
10 port = serial.Serial (p.device, bauds)
11 print ("\nNom du port : ',port.name)
12 print ('Port ouvert : ',port.is_open)
13 print ('Transmission : ', port.baudrate)
14 return port
15

16 | bauds = 115200
17 | port = portArduino (bauds)

18

19 | # Stockage des lignes lues dans le port série dans une liste

20 | mesures = [] # Liste de chaines (cf. ci-dessous)

21

22 | while True:

23 ligne = port.readline ()

24 ligne = ligne.strip/()

25 ligne = ligne.decode ("utf-8")

26 if 'Stop' in ligne: # Message d’arrét défini dans sketch Arduino
27 break

28 print (ligne)

29 mesures.append(ligne) # Rappel : ligne est de type string

30 | port.close()

31

32 # Traitement des mesures : liste de chaines —-> tableau de nombres

33 | # mesures = liste chalines -> data = liste de listes de flottants

34 separateurColonnes = ';' # Cf. sketch Arduino (';' ou '\t' = tabulation...)
35 data = [] # Liste de listes de chaines (cf. ci-dessous)

36 | for s in mesures:

37 L = s.split (separateurColonnes) # ligne = str -> liste de str = colonnes
38 data.append (L)

39 | # data -> dataN = tableau numpy bidimensionnel et conversion des colonnes en float

40 | dataN = np.array(data, dtype=float)

Q@ Stockage des lignes lues dans le port série — Lignes 20 et 29
On stocke les lignes (décodées au format chaine) dans une liste (liste mesures créée a la ligne 20, remplie a la ligne 29).

Q Extraction, traitement et stockage des données sous forme de nombres — Lignes 34 a 40
v Ligne 34 - Définition du séparateur de colonnes (dépend du séparateur utilisé dans le sketch Arduino).
v' Ligne 36 - Initialisation d’une liste vide data.
v Ligne 37 - Parcours des chaines de la liste mesures pour extraire les valeurs des colonnes.
e Ligne 38 - L’instruction s.split (separateurColonnes) renvoie une liste de chaines stockée dans L.
* Ligne 39 — Ajout de la liste L a la liste data.
v Ligne 41 — Conversion de la liste data en tableau numpy.

Q La conversion en tableau numpy permet d’effectuer des traitements mathématiques sur les colonnes du tableau obtenu.
Exemple : x = np.sin(dataN[:,0])*3 permet de définir un nouveau tableau de valeurs a partir de la colonne d’index 0.
11 est ensuite possible de tracer des courbes.

PC Python_port_serie.docx 4/4

