
PC Python_fichiers.docx 1/3

 Python – Fichiers texte

Objectif
�� : extraire et écrire des données dans un fichier texte (extensions .txt, .csv).

Structure des fichiers texte

����� Un fichier texte contient des caractères invisibles, par exemple :

 les sauts de lignes codés par '\n' en python ;

 les tabulations (sauts de colonnes, touche tab du clavier) codés par '\t' en python.

	
�� Exemple : deux fichiers texte contenant les mêmes informations (1 ligne d’en-tête, 1 ligne vide et 3 lignes de données)

 Séparateur colonnes = tabulation Séparateur colonnes = point-virgule

Fichiers ouverts dans Notepad++ avec affichage des caractères « invisibles »

��� L’inspection visuelle du contenu du fichier (Notepad++) est indispensable pour déterminer :

• le nombre de lignes à ignorer (titre, unités des colonnes, commentaires...) ;

• la nature du séparateur de colonnes (tabulation, point-virgule, virgule, ...) ;

• la nature du séparateur décimal (point ou virgule).

���� Un fichier est constitué de lignes séparées par un saut de ligne (symboles CR LF dans Notepad++ sous Windows, ci-dessus).

La méthode strip() permet de supprimer les sauts de lignes.

	
�� Exemple de ligne lue dans un fichier texte :

s = '4.51;0.7\n' → présence d’un saut de ligne '\n'

s.strip() → suppression

Renvoie la chaîne : '4.51;0.7'

���� Chaque ligne est une chaîne de caractères qui contient des données séparées par un caractère particulier appelé séparateur de

colonnes (point-virgule, virgule, tabulation… l’inspection visuelle du fichier texte permet de savoir quel est le caractère

utilisé).

La découpe d'une ligne (i.e. de la chaîne associée) en "colonnes" est effectuée par la méthode split() qui renvoie une liste

contenant autant de chaînes qu'il y a de colonnes dans le fichier (i.e. de valeurs sur une ligne).

	
�� Exemple de ligne lue dans un fichier texte :

s = '4.51;0.7' → deux valeurs séparées par un point-virgule

s.split(';') → « découpage » de la chaîne s sur le critère « point-virgule »

Renvoie la liste de chaînes : ['4.51', '0.7']

����� L’objectif après lecture et traitement est de reconstituer un tableau de mesures (tableau numpy de flottants).

Principe de l’extraction de données dans un fichier texte

1. Ouverture du fichier en lecture (mode 'read', 'r' en abrégé).

2. Répéter en boucle :

a. lire une ligne ;

b. traiter la ligne → suppression des caractères « invisibles » grâce à la méthode strip() ;

c. extraire les données d’une ligne → découpage de la ligne en « colonnes » grâce à la méthode split() ;

d. remplacer si nécessaire le séparateur décimal ;

e. stocker la ligne traitée dans une variable.

3. Fermer le fichier.
��� Ne pas oublier cette instruction.

PC Python_fichiers.docx 2/3

Ouverture d'un fichier : modes lecture, écriture ou ajout

���� Deux syntaxes possibles :

Syntaxe 1 Syntaxe 2

1

2

3

f = open(chemin_fichier, 'r')

Instructions

f.close()

1

2

3

with open(chemin_fichier, 'r') as f:

Instructions

Dans les deux cas, une variable f contenant toutes les informations relatives au fichier est créée.

Cependant, f n'est pas le "contenu" du fichier à proprement parler, c’est un objet qui possède des méthodes permettant de lire

le contenu du fichier.

La syntaxe 2 est préférable (fermeture automatique du fichier).

Paramètres de la fonction open() :

• chemin_fichier : chaîne (chemin absolu ou chemin relatif vers le fichier)

Exemple de chemin absolu (pyzo sous Windows) : Chemin_fichier = "D:\\Downloads\\mon_fichier.txt"

• 'r' (pour 'read') : ouverture en mode lecture

Ouverture en mode écriture 'w' (pour 'write') : efface et remplace le contenu du fichier

Ouverture en mode ajout 'a' (pour 'append') : ajoute du contenu à la fin du fichier

Une fois le fichier ouvert, il faut lire le contenu.

Lecture d'un fichier

���� Trois syntaxes possibles pour la ligne 2 des codes ci-dessus :

1. Lecture de la totalité du fichier texte = f.read() texte est de type chaîne

2. Lecture de la totalité des lignes du fichier lignes = f.readlines() lignes est une liste de chaînes

3. Lecture ligne par ligne à l’aide d’une boucle ligne = f.readline() ligne est une chaîne

La 3ème syntaxe permet le traitement et l’extraction de données en cours de lecture, ce sera la méthode utilisée.

Une boucle « infinie » lit le fichier ligne par ligne, la sortie de boucle est provoquée par une ligne vide (sans saut de ligne) :

Il faut ensuite insérer les instructions nécessaires au traitement des lignes, à l’extraction et au stockage des données.

1

2

3

4

5

6

7

with open(chemin_fichier, 'r') as f: # Ouverture du fichier en lecture

 while 1: # Boucle « infinie » (1 = True)

 ligne = f.readline() # Lecture d’une ligne

 if ligne == "": # Si la fin du fichier est atteinte…

 break # … on sort de la boucle

 else: # Sinon…

 # Instructions # … on procède aux traitements, on stocke…

PC Python_fichiers.docx 3/3

Lecture d'un fichier – Traitement des données et stockage

	
�� Exemple de fichier (inspection visuelle) :
t;y1;y2;y3

0;0,54030230586814;1;-1

0,009765625;0,485310422984771;0,995129089050063;-0,995129089050063

0,01953125;0,429023740491728;0,990281903873608;-0,990281903873608

0,029296875;0,371666995280259;0,985458328904506;-0,985458328904506

0,0390625;0,313466773471951;0,980658249139539;-0,980658249139539

 On constate que les deux premières lignes ne comportent pas de données (en-têtes de colonnes et ligne vide), elles devront

être ignorées au moment du traitement.

 Le séparateur de colonnes est le point-virgule.

 Le séparateur décimal est la virgule et non le point.

���� Code complet

����� Si le séparateur décimal est le point dans le fichier, les lignes 5, 21 à 23 sont inutiles.

����� La conversion en tableau numpy permet d’effectuer des traitements mathématiques sur les colonnes du tableau obtenu.

Exemple : x = np.sin(dataN[:,0])*3 permet de définir un nouveau tableau de valeurs à partir de la colonne d’index 0.

Il est ensuite possible de tracer des courbes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

import numpy as np

! Configuration à ADAPTER au fichier utilisé !

lgn_ign = 2 # ADAPTER - Nombre de lignes à ignorer (en-tête…)

sep_dec = ',' # ADAPTER - Séparateur décimal : ',' ou '.'

sep_col = ';' # ADAPTER - Séparateur de colonnes : '\t' si tabulation

chemin_fichier = 'C:\\TP\\regressi.csv' # ADAPTER - Chemin vers le fichier

Stockage des lignes lues dans le fichier dans une liste

data = [] # Liste de chaînes (cf. ci-dessous)

with open(chemin_fichier, 'r') as f: # Ouverture fichier (fermeture auto)

 while 1 : # Boucle "infinie" (jusqu'au break)

 ligne = f.readline() # Lecture d’une ligne = une chaîne

 ligne = ligne.strip() # Suppression du saut de ligne ('\n')

 if ligne == "" : # Si ligne vide...

 break # ...on quitte la boucle

 else: # sinon...(traitement de la ligne)

 lg = ligne.split(sep_col) # 1 chaîne -> n chaînes (n = nbre colonnes)

 if sep_dec == ',': # Traitement séparateur décimal

 data.append([s.replace(',','.') for s in lg]) # Ajout à data

 else:

 data.append(lg)

Transformation en tableau numpy de flottants sauf lignes à ignorer

dataN = np.array(data[lgn_ign:], dtype=float)

