
PC Langage_Cpp.docx 1/2

 Mémento langage Arduino C++

void : en C++, le mot-clé void indique qu'une fonction ne renvoie pas de valeur (cf. autres exemples de fonctions page 11).

Les délimiteurs sont les accolades (analogue à l’indentation en python).

��� Erreur : Compilation error: expected '}' at end of input (par exemple).

Chaque instruction doit se terminer par un point-virgule (en python, uniquement pour séparer 2 instructions sur une même ligne).

��� Erreur : Compilation error: expected ';' before ….

Commentaires sur une seule ligne : // (# en python) ; multilignes /* … */ (""" … """ en python).

Noms de variables
Caractères utilisables : _, 0, 1, 2, ..., 9, A, B, ..., Z, a, b, ..., z (commence toujours par une lettre ou un tiret bas « _ »).

Types

Entiers : short (2 octets
15 15

2 2 1n
−− ≤ ≤ − , 16 bits) 215 = 32 768

unsigned short (2 octets
16

0 2 1n≤ ≤ −)

char (1 octet
7 7

2 2 1n
−− ≤ ≤ − , 8 bits) ('A' et 65 sont équivalents, codage ASCII)

byte (1 octet
8

0 2 1n≤ ≤ −)

int, unsigned int dépend du microcontrôleur (16 bits sur Arduino Uno)

long (4 octets
31 32

2 2 1n
−− ≤ ≤ − , 32 bits)

unsigned long (4 octets
32

0 2 1n≤ ≤ −)

bool ou boolean deux valeurs true ou false (sans majuscule au contraire de python)

Flottants : float (9,4039548.10-38 à 3,4028235.10+38, 32 bits) Ex : 1.5e-2

Chaînes : https://docs.arduino.cc/language-reference/en/variables/data-types/string/

Affectation
Comme en python, le symbole d’affectation est le signe égal : « = ».

Déclaration des variables et types

Dans le langage C le type et les variables doivent être déclarés.

��� Erreur : ‘nom_variable’ was not declared in this scope.

int i; // Déclaration sans affectation (l’affectation aura lieu plus loin dans le programme)
float pi = 3.14; // Déclaration et affectation simultanées
char c = 'a';

Opérateurs

+, -, *, /, % (reste division entière)

== (test d'égalité), != (test de différence), <, >, <=, >= (tests de comparaison)

! (négation),|| (ou), && (et)

Raccourcis

i=i+1; ⇔ i++; i=i-1; ⇔ i--;

a=a+b; ⇔ a+=b; a=a-b; ⇔ a-=b;

1

2

3

4

5

6

7

8

9

10

11

12

// Commentaire sur une ligne

void setup() {
// Initialisation : instructions exécutées une seule fois
Instruction1;
Instruction2;
}

void loop() {
// Instructions répétées en boucle infinie
Instruction3;
}

PC Langage_Cpp.docx 2/2

Instruction conditionnelle

if (conditions) {instructions}
else if (conditions) {instructions} (instruction else if facultative, peut être répétée)

else (conditions) {instructions} (instruction else facultative)

Rq : il existe une instruction conditionnelle multiple switch…case

Boucles
while (conditions) {instructions}
for (i=0;i<100;i=i+1) {instructions} (par exemple)

Rq : il existe une boucle do…while

Tableaux

La taille des tableaux doit être une constante.

type nom_tableau[dimension]
Exemples :

int liste[10];
float L[3] = {1.1, 2.2, 3.3};

Accès via l’indice/index (la numérotation commence à 0 comme en python) : nom_tableau[indice]

Directives de compilation

Une directive de compilation indique au compilateur de procéder à des opérations préalables au début de la compilation.

Ces directives se situent en tout début du programme source.

#include <fichier> // Inclure des librairies (analogue à import en python)

#include "fichier.h" // Autre syntaxe

#define alias valeur // Remplace alias par valeur

Exemple : #define capteur1 A0 analogue à const int capteur1 = A0 mais gain de mémoire avec define.

Const

Ce mot clé permet de définir une variable qui, une fois initialisée, ne pourra plus être modifiée.

Exemple :
Const float pi = 3.1415 ;
x = 2 * pi ;

Aide en ligne https://docs.arduino.cc/language-reference/

Fonctions https://docs.arduino.cc/language-reference/#functions

Variables https://docs.arduino.cc/language-reference/#variables

Structure https://docs.arduino.cc/language-reference/#structure

Transfert des données - Annexes techniques

Port série – Cf. « Découvrir en expérimentant » et tutoriels détaillés.

Un port série, également appelé port COM, est un type d'interface informatique qui permet la communication entre un ordinateur

et des périphériques externes. Il s'agit d'un port physique sur un ordinateur ou un appareil qui permet d'envoyer et de recevoir des

données bit par bit et séquentiellement sur un seul fil.

Ouverture et écriture dans le port série

Serial.begin(v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. exemple 1).

Serial.print(s) Ecrire la chaîne s sur la ligne courante (à la suite de la dernière chaîne écrite si elle existe) ou sur

une nouvelle ligne sinon sans retour à la ligne.

Serial.println(s) Ecrire la chaîne s sur la ligne courante (à la suite de la dernière chaîne écrite si elle existe) ou sur

une nouvelle ligne sinon puis retour à la ligne.

Time

Il est parfois nécessaire d’indiquer au microcontrôleur un délai d’attente (entre une mesure et son traitement par exemple).

delay(n) Attendre n ms (millisecondes).

millis() Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

Fichiers et caractères de codage « invisibles » – « Découvrir en expérimentant » et tutoriels détaillés.

Les fichiers comportent des caractères « invisibles » (on peut les visualiser dans un éditeur de texte tel que Notepad++).

Il s’agit par exemple des caractères qui provoquent un retour à la ligne, en python : \n (système Linux), \r\n (Windows), \r (Mac).

La bibliothèque python serial (https://pyserial.readthedocs.io/) permet de lire les lignes écrites dans le port série :

ligne = serial.Serial(port_serie, vitesse). readline() (lecture et stockage du résultat dans une variable nommée ligne).

Les données lues dans le port série sont au format binaire, ligne.decode("utf-8") permet de décoder ce format.

���	
 Ces informations sont utiles lorsqu’il s’agit de sauvegarder des données lues sur le port série dans un fichier texte.

